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Abstract 

Background: Road traffic injuries are a significant cause of death and disability globally. However, in some countries 
the exact health burden caused by road traffic injuries is unknown. In Malawi, there is no central reporting mecha‑
nism for road traffic injuries and so the exact extent of the health burden caused by road traffic injuries is hard to 
determine. A limited number of models predict the incidence of mortality due to road traffic injury in Malawi. These 
estimates vary greatly, owing to differences in assumptions, and so the health burden caused on the population by 
road traffic injuries remains unclear.

Methods: We use an individual‑based model and combine an epidemiological model of road traffic injuries with 
a health seeking behaviour and health system model. We provide a detailed representation of road traffic inju‑
ries in Malawi, from the onset of the injury through to the final health outcome. We also investigate the effects of 
an assumption made by other models that multiple injuries do not contribute to health burden caused by road 
accidents.

Results: Our model estimates an overall average incidence of mortality between 23.5 and 29.8 per 100,000 person 
years due to road traffic injuries and an average of 180,000 to 225,000 disability‑adjusted life years (DALYs) per year 
between 2010 and 2020 in an estimated average population size of 1,364,000 over the 10‑year period. Our estimated 
incidence of mortality falls within the range of other estimates currently available for Malawi, whereas our estimated 
number of DALYs is greater than the only other estimate available for Malawi, the GBD estimate predicting and aver‑
age of 126,200 DALYs per year over the same time period. Our estimates, which account for multiple injuries, predict a 
22–58% increase in overall health burden compared to the model ran as a single injury model.

Conclusions: Road traffic injuries are difficult to model with conventional modelling methods, owing to the numer‑
ous types of injuries that occur. Using an individual‑based model framework, we can provide a detailed representa‑
tion of road traffic injuries. Our results indicate a higher health burden caused by road traffic injuries than previously 
estimated.

Keywords: Road traffic injuries, Malawi, Individual‑based model, Health burden

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  robbie.smith@ucl.ac.uk

1 University College London, Gower Street, London WC1E 6BT, UK
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-9457-2821
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40621-022-00386-6&domain=pdf


Page 2 of 29Manning Smith et al. Injury Epidemiology            (2022) 9:21 

Background
Road traffic injuries (RTIs) are a significant contributor 
to death and disability globally (Vos et  al. 2015; Lozano 
et al. 2012). The health burden caused by RTIs is increas-
ingly significant, with RTIs being ranked within the top 
ten causes of disability adjusted life years (DALYs) (Bhalla 
et  al. 2013), with the Global Burden of Disease (GBD) 
study estimating RTIs caused 73 million DALYs globally 
in 2019 (Abbafati et al. 2020). The World Health Organi-
zation (WHO) estimates that 93% of the global fatalities 
due to RTIs occur in low and middle-income countries 
(LMICs), despite these regions only accounting for 60% 
of vehicles worldwide (WHO 2015). Despite the increas-
ing significance of RTIs in human health, RTIs receive 
significantly less research attention than other health 
conditions (Lagarde 2007).

In Malawi, the incidence of injury and mortality due 
to road traffic crashes is estimated to have increased 
over time from 135,000 RTIs in 2010 to 180,000 in 2019 
(Global Health Data 2017), likely due to increased vehicle 
ownership (Banza et  al. 2018). Consequently, the health 
burden caused by RTIs is expected to increase (Mathers 
and Loncar 2006). The majority of road injuries occur in 
young adult males in Malawi (Banza et al. 2018; Schlott-
mann et  al. 2017). RTIs are a preventable health bur-
den with well-established preventative measures such 
as improvement to road infrastructure, robust driver 
licencing or enforcement of traffic laws. Some preven-
tative measures are present in Malawi’s road safety laws 
(Government of Malawi 1997); however, there is report-
edly limited compliance (Ngwira et al. 2020; Sundet et al. 
2020).

It is difficult to determine the extent of health burden 
and the burden on the health system imposed by RTIs 
in Malawi. The most recent data-based estimate for the 
incidence of RTI in Malawi comes from the 2003 World 
Health Survey (WHO 2005), estimating 3562 RTIs per 
100,000 person years (see ‘Appendix’ for calculation). The 
only other available estimate measured per 100,000 per-
son years for the incidence of RTIs comes from the GBD 
study, who used the results of the 2003 World Health 
Survey in Malawi to inform their estimated incidence 
of RTIs, estimating the incidence of RTIs which warrant 
some form of medical intervention rather than all inju-
ries. There is limited reporting on the use of the health 
system by RTI patients in Malawi outside of referral hos-
pitals, but a recent study pooling the available data from 
several trauma registries in Malawi has shown that the 
majority (48%) of trauma-related admissions are for RTI 
patients (Chokotho et al. 2022).

The most commonly available metrics regarding RTIs 
concern only the incidence of mortality, and these are 
often not consistent between different sources. There is 

no centralised trauma care or reporting systems in place 
in Malawi, meaning that there is limited information on 
the national provision of care and epidemiology of inju-
ries in Malawi (Samuel et  al. 2012). Data from Malawi’s 
government run integrated household surveys (IHS) can 
be used to formulate an estimate for the incidence of 
mortality due to road injuries in Malawi. The most recent 
survey estimates 16.8 deaths per 100,000 person years 
occur due to RTIs (National Statistical Office 2021) (see 
‘Appendix’ for calculation). Police and hospital records 
of road traffic injury fatalities exist for Malawi, with hos-
pital and police records estimating 5.1 and 7.5 deaths 
per 100,000 person years, respectively. However, these 
records are incomplete (Samuel et al. 2012). A capture–
recapture analysis aiming to account for the likelihood of 
underreported RTIs in Malawi estimated an incidence of 
19.2–20.9 deaths per 100,000 person years (Samuel et al. 
2012). The largest published estimate for the incidence 
of mortality comes from the WHO, with estimated 35 
deaths per 100,000 person years in Malawi (WHO 2015). 
This lack of clarity regarding the level of mortality makes 
determining the full extent of the health burden caused 
by RTIs in Malawi difficult.

Mathematical models of RTIs in Malawi are limited in 
number. Currently, the most descriptive available model 
is the GBD study, which provides estimates for the occur-
rence, demographics and health outcomes (death and 
DALYs) for those injured in road traffic collisions (Global 
Health Data 2017). This model makes an important sim-
plifying assumption with regard to injuries, in that mul-
tiple injuries aren’t accounted for when predicting the 
incidence and health consequences of RTIs, and instead 
the most serious injury was used to represent the major-
ity of the health burden (Haagsma et al. 2016). However, 
arguably multiple injuries are an important aspect of 
road traffic injury epidemiology, with the number of inju-
ries, type of injuries and even the bodily location of the 
injury altering the health outcome of RTI patients (Gabbe 
et al. 2014; Tyson et al. 2015). By not accounting for mul-
tiple injuries, it may be that the health consequences 
of RTI are not represented fully in the GBD estimates, 
either in the incidence of injuries predicted or the num-
ber of deaths predicted in the model. Another relevant 
model for RTIs in Malawi comes from the WHO, which 
only estimates the incidence of mortality from RTIs in a 
regression model, using several covariates, including life-
style factors, health care availability and road safety laws 
(WHO 2018). The WHO model does not estimate the 
occurrence and health consequences of non-fatal RTIs, 
meaning the model does not capture the full health bur-
den RTIs in Malawi.

In addition, both the GBD and the WHO model, the 
role of the health system in determining the mortality 
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of people with RTIs is considered; however, this is rep-
resented as one of many covariates within a regression 
model, relating to health care access and quality. This 
combines people seeking health care and the health sys-
tem being able to provide care into a single covariate of 
the model. This approach does not allow for modelling 
the direct link between physical constraints to providing 
health care, such as resource availability/staff and also the 
reasons behind a person seeking or not seeking health 
care.

Whilst there are some available data on RTIs in Malawi, 
such as the IHS data in Malawi, this only shows a portion 
of the burden caused by RTIs, non-fatal injuries aren’t 
accounted for.

We aim to: (1) provide an estimate of the full health 
burden of RTIs in Malawi, estimating the effect of the 
current health system on the number of deaths and 
DALYs cause by RTIs in Malawi and (2) understand the 
importance of the assumption that multiple injuries do 
not contribute to the health burden overall.

We do so by developing a detailed mathematical model 
of RTIs in Malawi, using an individual-based model 
(IBM) framework. We model injuries at a diagnosable 
level (for example, fractured tibia, laceration to the head, 
etc.) and predict the injured population’s health experi-
ence from the initial accident to their interaction with the 
health system. We explicitly model factors which would 
influence an individual’s decision to seek health care and 
once they seek care, model the availability of the care 
required.

Methods
The Thanzi La Onse model: a brief introduction
We developed a model of RTIs using an IBM approach. 
The road traffic injury model is part of a collection of 
models, forming the Thanzi La Onse (TLO) multi-dis-
ease population health and health system model. Much 
of the RTIs model presented in this paper makes use of 
the existing TLO modelling framework, which we pro-
vide a brief description of here. A more in-depth descrip-
tion of the TLO modelling framework can be found at 
https:// www. tlomo del. org/.

In the model, the agents are fictional representatives 
of individuals of the population of Malawi. Each per-
son has a number of attributes assigned to them which 
represents the demographic, lifestyle and health charac-
teristics of the population of Malawi. For example, each 
person has an age and sex assigned to them, a smoking 
and excessive alcohol consumption status and disease 
infection statuses. A full list of the attribute assigned to 
each individual related to the road traffic injury model is 
given in ‘Appendix’, Table  1. The model’s population go 
through life over a predetermined length of simulation 

time, over the course of which some will develop or be 
afflicted by diseases/injuries. Some of those with health 
problems will seek care at one of the model’s represen-
tations of the Malawian health system. Here, the health 
system is represented as a group of resources available for 
consumption, such as staff time, bed capacity and physi-
cal consumables. A detailed description of the model’s 
health system can be found (see link above). Whether 
they seek care or not is dependent on lifestyle and demo-
graphic characteristics each person possesses and the 
disease/injury they are affected by, with the health seek-
ing behaviour model being based studies of health seek-
ing behaviour in Malawian children and adults (Ng’ambi 
et al. 2020; Ng’ambi et al. 2020).

Those who seek health care interact with the model’s 
representation of Malawi’s health system. The health sys-
tem model provides health care to the population at dif-
fering facility levels, representing the variety of levels of 
health care such as village level health facilities, district 
hospitals, regional hospitals and national hospitals. Each 
facility level has a finite number of resources which can 
be used to treat patients. For many diseases modelled, the 
interaction with the health system will in turn affect the 
health outcomes for the patient, and this health system–
epidemiology interaction is captured with the TLO mod-
elling framework.

Road traffic injuries model
The RTI model essentially asks a series of questions of the 
model population each month:

1. Who is injured in a road traffic crash this month?
2. Did the injured persons die on the scene of the crash?
3. If they didn’t die on scene, what injuries did each 

injured person receive?
4. Did they go on to seek health care for their injuries?
5. If they sought health care for their injuries, what do 

they need from the health system for their treatment?
6. Based on their choice to seek or not seek health care, 

what health outcomes did each injured person expe-
rience (mortality, morbidity or recovery)?

In an attempt to make simplifications to the model 
which would not affect the overall level of health bur-
den and health system usage, we do not explicitly model 
individual vehicle collisions. This means that we do not 
account for properties of the physical world in our model 
(e.g. speed, road surface, vehicle type, number of vehicles 
in a crash, the number of people in an individual crash or 
the relationship between people involved in crashes).

A schematic of the model is given in Fig.  1, and we 
go through each question (Q1–Q6) asked by the model 
in turn below. A full list of parameters is provided in 

https://www.tlomodel.org/
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‘Appendix’. A detailed explanation of the RTI model 
including the code used in the model can be found on the 
TLO website.

Q1 Who is injured in a road traffic crash this month?
To determine who will be injured in a road traffic colli-
sion in the model, we assume that the members of the 
model’s population are involved in a road traffic collision 
at fixed rate ‘base_rate_injrti’. We then increase the like-
lihood of males, those in certain age groups and those 
who consume excessive alcohol being injured in a road 
accident. We calibrated the value of the parameter ‘base_
rate_injrti’ to produce an incidence of RTIs matching the 
ten-year average of the GBD’s predicted incidence of RTI. 
We calibrated the parameter ‘rr_injrti_male’ to the GBD’s 
estimated gender ratio. The several age-related param-
eters were also calibrated to the GBD estimated age dis-
tribution of those with RTIs. Another risk factor for RTIs 
is alcohol consumption, for example, roughly 25% of the 
road traffic injury patients treated at Kamuzu Central 
Hospital either tested positive for alcohol or reported 
using alcohol before their injuries (Sundet et  al. 2020). 
We used the relative risk of alcohol consumption in a 
Tanzanian study to parameterise ‘rr_injrti_excessalcohol’ 
(Staton et al. 2018).

Q2 Did the injured persons die on the scene of the crash?
Some RTIs will invariably be fatal. We assume that pre-
hospital mortality occurs in a fixed proportion of those 
involved in road traffic crashes before the allocation of inju-
ries. The parameter value of ‘imm_death_proportion_rti’ 

was calibrated to the incidence of on-scene mortality 
reported by Malawi’s police (Schlottmann et al. 2017).

Q3 What injuries did each injured person receive?
In determining the health outcomes for RTIs, the num-
ber of injuries, anatomic location of the injury and type of 
injury have been shown to be important factors in deter-
mining mortality and morbidity (Gabbe et al. 2014). The 
injuries each person receives will also determine what 
they require from the health system for their treatment. 
To decide the exact injuries each injured person has, 
the model assigns injuries in a three-step process. The 
model determines how many injuries each person has, 
where the injuries are anatomically located on the body, 
and based on the anatomic location, what these injuries 
are. When designing the injury assigning section of the 
model, we limited the injuries that were assigned to those 
which would warrant some form of health care. This 
approach was chosen as some of the injuries received 
from road accidents will be minor and not produce a sig-
nificant health burden, an assumption shared with the 
GBD study (Haagsma et al. 2016).

To determine the number of injuries assigned to each 
injured person, we developed a negative exponential dis-
tribution and calibrated our resulting average number 
of injuries reported in a paediatric study from Malawi’s 
Kamuzu Central Hospital (Sundet et al. 2018). Our pro-
cess of developing the distribution is given in ‘Appen-
dix’. The resulting percentages of single injuries in those 
with RTIs ranged from 71 to 76%. This falls within the 
ranges reported in several studies from Sub-Saharan 

Fig. 1 Road traffic injury model diagram, Q1 through 6 related to the questions asked by the model to determine the health burden and 
corresponding health system usage caused by RTIs in Malawi. Owing to the large number parameters used to determine the answer to these 
questions, we have listed the parameters in ‘Appendix’ in Table 2, organised by the question asked
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Africa (SSA), with the percentage of single injuries in RTI 
patients ranging from 66 to 81% (Akinpelu et  al. 2007; 
Ganveer and Tiwari 2005; Madubueze et  al. 2010; San-
yang et al. 2017; Thanni and Kehinde 2006).

The anatomic location of the injuries is determined 
by the average distribution of anatomic injury location 
found in (Otieno et al. 2004; Ranti et al. 2015), and finally, 
the exact injury each person receives is informed by sev-
eral studies. The numerous parameter values used to 
determine which of the 76 injuries accounted for by the 
model each person has are given in ‘Appendix’.

Q4 Did they go on to seek health care for their injuries?
The model’s predicted health seeking behaviour (HSB) is 
determined in part by the results of (Ng’ambi et al. 2020; 
Ng’ambi et al. 2020). The HSB model uses demographic 
and lifestyle factors, along with the symptoms the per-
son has as a result of their injury/illness to determine 
HSB. Ng’ambi et  al. did not specifically focus on RTIs, 
instead focusing on injuries in general. We assume that 
at a certain level of injury, people will always seek health 
care for their injuries, and we used the injury severity 
score (ISS) (Baker et al. 1974), to determine this thresh-
old. We assume that there exists a level of injury sever-
ity which will cause a person to automatically seek health 
care, below this level of severity, HSB is determined by 
the results of Ng’ambi et al. (2020). This severity level is 
determined by the parameter ‘rt_emergency_care_ISS_
score_cut_off’. We established a parameter space which 
produced an overall level of HSB for RTIs which fell in 
the bounds reported in other SSA countries (Zafar et al. 
2018).

Q5 If they sought health care for their injuries, what do they 
need from the health system for their treatment?
To best represent the provision of treatment for RTIs 
in Malawi, we based the provided treatments on those 
that are described in the Malawian treatment guidelines 
(Ministry of Health 2015), Malawi’s essential health pack-
age (EHP) or treatments that have been reported in aca-
demic literature. To simplify the model, we assume that 
if a treatment is described in the treatment guidelines or 
Malawi-based academic literature, then the treatment is 
available at local hospitals.

The treatment plan for some injuries must be deter-
mined on an individual basis. An example of this is the 
use of several treatment methods to treat lower extrem-
ity fractures in Malawi (Chagomerana et  al. 2017). We 
account for intricate differences in potential treat-
ment plans with fixed probabilities that certain treat-
ment options will be used for each patient. A full list of 
treatments being provided by the model and references 

to show evidence they are used in Malawi is given in 
‘Appendix’ (Table 3).

Q6 Based on their choice to seek or not seek health care, 
what health outcomes did each injured person experience 
(mortality, morbidity or recovery)?
We used the severity of a person’s injuries to determine 
the mortality with and without seeking health care. To 
quantify the health burden of a person’s injuries, we use 
a number of commonly used injury severity metrics. To 
quantify the severity of singular injuries, we used the 
abbreviated injury score (AIS) (Gennarelli and Wodzin 
2006), using the R library ‘InjurySeverityScore’ to convert 
ICD-9 diagnosis codes to a corresponding AIS score (D. 
Tian 2019). To quantify the severity of multiple injuries, 
we used the injury severity score (ISS) (Baker et al. 1974), 
which makes use of the AIS score of the person’s inju-
ries. We also used the military abbreviated injury score 
(MAIS) to quantify the severity of injuries and used this 
to predict the probability of mortality without medical 
intervention (Champion et  al. 2010). The disability bur-
den posed by RTIs was quantified using DALY weights. 
Each injury has a corresponding DALY weight, sourced 
from the GBD study (Salomon et al. 2015), see ‘Appendix’. 
Where the GBD studies DALY weights was too broad 
or had missing injuries, we used another source (Gabbe 
et al. 2016).

For those who seek health care and receive treatment 
(conditional on its availability), we use the ISS score to 
determine mortality. There was limited information of 
the probability of death based on the ISS score in Malawi 
or elsewhere in Africa, as such we used results from a 
non-African study to establish a relationship between ISS 
score and mortality. We used the same score boundaries 
reported in the study (Kuwabara et al. 2010), but scaled 
the reported probability of mortality in each ISS score 
boundary so that the overall in-hospital mortality pre-
dicted by the model matched the overall in-hospital mor-
tality reported in a national-scale Tanzanian study (Sawe 
et al. 2021).

For those who did not seek health care and when 
health care was not available, we assume that mortality is 
only considered for those with an injury above a certain 
threshold. In these circumstances, we use their MAIS 
score to determine mortality. This assumption that the 
MAIS can be used to predict mortality without health 
care is tenuous; however, information is limited for the 
probability of mortality from injuries without medical 
intervention and this was one of the few mortality-pre-
dicting scoring systems in a setting with limited health 
care provision. The person’s MAIS score corresponded to 
a probability of mortality, if the person hadn’t sought care 
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after a week of model simulation time, the model used 
this probability to determine whether they had died from 
their injuries.

For morbidity, we used DALY weights to quantify 
health burden from each injury. This health burden was 
applied to the person when the person’s injuries were 
assigned. Once a person had sought health care, after a 
period of recovery time post-treatment this DALY weight 
was removed (if applicable as some injuries have an asso-
ciated long-term DALY weight). For those who didn’t 
seek health care and survived their injuries, we assumed 
that the DALY weight associated with their injuries 
would still be removed, but after a longer duration than 
if they had sought health care for their injuries. The dura-
tion of time which a person experiences a health burden 
associated with their injuries is dependent on the injuries 
sustained, and a full list of the assumed heal time associ-
ated with each injury is given in ‘Appendix’.

A full list of injuries modelled, the health burden asso-
ciated with the injury, the treatment used, properties 
of the population modelled and parameters used in the 
model and their source/calibration process is given in 
‘Appendix’.

Calibration
To calibrate the sections of our model described above, 
we created multiple scenarios of road traffic injury epi-
demics. The multiple injury scenario is designed to pro-
vide a more realistic representation of Malawi’s RTI 
epidemic. This scenario is a model based on more real-
istic assumptions than are currently present in other 
models of RTIs, such as the GBD model. This scenario is 
used to produce our estimated incidence of mortality and 
DALYs.

We want to demonstrate the effect of considering mul-
tiple injuries in RTI models, but as our methodology dif-
fers greatly from the GBD single injury model, we cannot 
compare the two models directly to draw conclusions on 
the effect of modelling multiple injuries. To demonstrate 
what differences considering multiple injuries in road 
traffic injuries have on population health, we need to 
see what our model’s predicted health burden would be 
without considering multiple injuries. To do this, we cre-
ated a single injury form of the model, which we use to 
the estimate resulting incidence of mortality and DALYs 
and form a point of comparison to the multiple injury 
model’s results. In both scenarios, we allow the health 
system to run as normal, representing Malawi’s current 
care capacity.

We also wish to show the current effectiveness of 
Malawi’s health system in treating RTIs. We use our most 
realistic scenario, where we consider multiple injuries 
from RTIs to represent Malawi’s RTI epidemic with the 

model’s normal representation of Malawi’s health system. 
We compare this scenario to one where people experi-
ence multiple injuries and do not receive treatment from 
the health system.

In calibrating each scenario, a particular parameter 
was incrementally changed, producing a change in the 
model’s behaviour in an area we desired to calibrate. 
For example, a change in the parameter ‘rr_injrti_male’ 
would either increase or decrease the relative risk of 
being injured in a road collision if male and would in turn 
change the overall percentage of those in RTIs who are 
male.

For each scenario and associated parameter value, we 
ran the model multiple times over ten years of simula-
tion time. The average results of the runs associated with 
each scenario are an indication of the model’s behaviours 
for that parameter value. By incrementally changing the 
parameter values used in the model and taking the average 
model output per parameter value, we found parameter 
values which produced model output that matched our 
various calibration targets, stated in the previous section.

Some parameters were independent of other model 
parameters, and as such, we could find a single parameter 
value which produced our calibration target. Other parts 
of the model were interdependent and required scenarios 
where multiple parameters were changed in combina-
tion with one another to find parameter value which pro-
duced calibration targets in each model area.

For some sections of the model, we had no particular 
estimate to calibrate the model to. For example, we had a 
range of values for the overall percentage of HSB, rather 
than a specific percentage of HSB to calibrate to. In this 
case, we established a parameter space for the parameter 
‘rt_emergency_care_ISS_score_cut_off’ which produced 
an overall level of HSB which fell within our calibration 
targets.

Accounting for uncertainty
There is an inherent uncertainty in IBM that is caused by 
the stochasticity between runs. Each model run is unique, 
meaning that in order to produce clearer picture of the 
model’s behaviour, we have to run the model multiple 
times, taking the average of the results produced in each 
run. In each scenario, we ran the model with a population 
of 20,000 for ten years of simulation time, running the 
simulation 4 times each. When running individual model 
runs over a 10-year period with a population of 20,000, 
all individual model runs produced an average incidence 
of RTIs which fell within the 95% uncertainty interval 
predicted by the GBD study. We performed 4 model runs 
per scenario as this managed computational time whilst 
producing results which consistently fell within our cali-
bration targets (see ‘Appendix’).
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Comparison between single injury and multiple injury RTI 
models
To investigate the effect of single and multiple injuries in 
other areas of population health, we compare two forms 
of our model: one where we only give those injured in 
road accidents single injuries and one where we give out 
multiple injuries. In both forms of the model, the inci-
dence of RTI in the population is calibrated to the aver-
age incidence of RTI predicted by GBD for Malawi in 
2010–2019. By comparing the results of the two models, 
we see the influence of considering multiple injuries on 
the health outcomes for RTIs.

Estimating the reduction in health burden attributed 
to the health system
To demonstrate the usefulness of explicitly modelling 
the health system, we investigate the reduction in harm 
to population health caused by the health system. We ran 
the model as normal, with health care being provided by 
the health system, and then ran the model without health 
care being provided by the health system (effectively all 
injured persons going through the ‘didn’t seek care’ route 
of the model, see Fig.  1). We compared the results of 
each scenario to find the reduction in DALYs and deaths 
attributed to the health system.

Calculating summary statistics from the model
During the course of a simulation, the model will per-
form a routine logging event for each month of simu-
lated time. Within this logging event, we can calculate 
summary statistics of interest, for example, the number 
of people involved in a road traffic accident, their age/
sex demographics and their health outcomes. These sum-
mary statistics are stored as a logfile, from which we can 
analyse the model’s behaviour over time. Based on these 
monthly calculations, we can calculate yearly averages for 
our model’s outputs, which were used in the model’s cali-
bration and form the basis of the model’s results.

Results
Calibration results
The calibration of the model managed to successfully 
reproduce many of the model’s target outputs, Fig.  2a 
shows the calibration of the overall incidence of RTIs in 
the population to the GBD estimate, Fig.  2b shows the 
calibration of the overall percentage of RTIs that involve 
males to compared to the GBD estimate, Fig.  2c shows 
the calibration of the age distribution for those with RTIs 
in the population to the GBD estimates, Fig.  2d shows 
the model’s resulting percentage of RTIs that involve 
alcohol consumption compared to output from Kamuzu 
Central Hospital (Sundet et  al. 2020), Fig.  2e shows the 

calibration of the overall incidence of on-scene mortal-
ity RTIs in the population to the estimate from Malawi 
police data (Schlottmann et  al. 2017), Fig.  2f shows the 
calibration number of injuries of those in the health 
system, to an estimate from Kamuzu Central Hospi-
tal (Sundet et  al. 2018), Fig.  2g shows the calibration of 
the overall percentage of HSB, compared to the bounds 
reported in other SSA countries (Zafar et al. 2018), and 
Fig.  2h shows the calibration percentage of overall in-
hospital mortality to the Tanzanian national average in-
hospital mortality for RTIs (Sawe et  al. 2021). Based on 
the range of parameters which produced HSB that fit 
within the ranges reported by Zafar et al. (2018) (Fig. 2g), 
we recalibrated several model parameters to produce the 
above calibration targets for each value of rt_emergency_
care_ISS_score_cut_off to ensure full calibration in each 
model run (Table 4).

A comparison of our model to the GBD estimates 
of health burden caused by RTIs in Malawi
Incidence of mortality
Based on our calibration to the GBD’s estimate for the 
incidence of RTIs in Malawi, our estimated incidence of 
mortality ranged from 23.5 to 29.8 per 100,000 person 
years, depending on the overall percentage of people 
seeking care for their injuries (Fig. 3).

Disability
Based on our calibration to the GBD’s estimated inci-
dence of RTIs, our model predicts between 1,800,000 and 
2,250,000 DALYs caused by RTIs from 2010 to 2019 (Fig. 4).

Comparing the multiple injury and single injury forms 
of the model
As in the multiple injury form of the model, the overall 
health burden predicted by the models was dependent 
on the percentage of people who sought health care for 
their injuries. We compared the results of the single and 
multiple injury models for the values of the parameter 
‘rt_emergency_care_ISS_score_cut_off’ which produced 
HSB which fell within the ranges reported in Zafar et al. 
(2018). In the single injury form of the model, the average 
incidence of mortality per 100,000 person years ranged 
from 18.8 to 21.3 for each parameter value of ‘rt_emer-
gency_care_ISS_score_cut_off’. The number of DALYs 
caused by RTIs from 2010 to 2019 predicted by the model 
ranged from 1,400,000 to 1,560,000. In both deaths and 
DALYs, accounting for multiple injuries resulted in a 
22–58% increase to DALYs and a 20–56% increase in 
the number of deaths. A comparison of the results of 
the GBD, single and multiple injury models for ‘rt_emer-
gency_care_ISS_score_cut_off’ = 5 is given in Fig. 5.
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The predicted effectiveness of the health system 
in reducing death and disability
Comparing model runs where the health system is 
allowed to provide care to runs where no health care 
is provided reveals the predicted effectiveness of the 
health system in preventing death and disability. Our 
model estimates an incidence of mortality ranging from 
23.5 to 29.8 per 100,000 person years with the health 
system running. Without the health system, the model 
predicts an incidence of mortality of 63.15 per 100,000 
person years. For DALYs, our model predicted between 

1,800,000 and 2,250,000 from 2010 to 2019 with the 
health system and roughly 4.3 million DALYs without 
the health system (Fig. 6).

Discussion
The health burden of road traffic injuries in Malawi
Epidemiological models of RTIs are uncommon com-
pared to other disease areas. To better understand the 
health burden imposed by RTIs in Malawi, we develop 
an IBM to estimate the incidence of mortality due to 
RTIs in Malawi. We linked RTI epidemiology with HSB 

Fig. 2 Model calibration. Panel a shows the calibration of the model’s incidence of RTIs to the mean incidence of RTIs predicted by the GBD study 
between 2010 and 2019 in Malawi. Panel b shows the calibration of the model’s predicted proportion of RTIs involving males to the average 
proportion of males from the GBD estimates 2010–2019. Panel c shows the age distribution of those involved in RTIs. Panel d shows the proportion 
of RTIs involving alcohol. Panel e shows the calibration of the model’s predicted incidence of on‑scene mortality to an estimate derived from 
Malawi’s police data (Schlottmann et al. 2017). Panel f shows the model’s predicted average number of injuries per person calibrated to results 
from Kamuzu Central Hospital (KCH) (Sundet et al. 2018). Panel g shows the calibration effort to produce HSB falling within the bounds reported in 
other SSA countries (Zafar et al. 2018). Finally, panel h shows the calibration of the model’s overall predicted mortality of those who have received 
treatment, taking the relationship between ISS scores and mortality reported by Kuwabara et al. (2010) and scaling this to the results from a 
national‑scale study on mortality with treatment in Tanzania (Sawe et al. 2021)
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and health system availability to form a complete health 
journey for individuals with RTIs, from initial injury 
through to recovery, disability or mortality. We calibrated 
our overall incidence of RTIs to the average of the GBD’s 
estimated incidence of RTIs between 2010 and 2019, 
but apart from that the assumptions and methodology 
between the two studies vary. We compare the predicted 
health burden produced by the two models.

Our model produced a higher estimated incidence 
of mortality compared to the GBD study, predicting 
between 25.95 and 28.38 deaths per 100,000 person years 
compared to the GBD estimate of 12.1 per 100,000 per-
son years, meaning that our model estimates a higher 
case fatality ratio. Results from Nigerian population sur-
veys that estimate 3.9% of RTIs were fatal (Bun 2012). 
Our model that estimates between 2.5 and 3.1% of RTIs 
were fatal, whereas the GBD estimates that predict 1.3% 
of RTIs were fatal. One of the key differences between the 
models is our model’s consideration of multiple injury. 
We conducted an internal comparison of our model as a 

single injury model and as a multiple injury model. The 
estimated incidence of mortality produced by our single 
injury model ranged from 18.8 to 21.3 per 100,000 per-
son years, implying that accounting for multiple injuries 
in a model will increase mortality by around 5–9 deaths 
per 100,000 person years (roughly 22–58% increase). 
Even without considering the role of multiple injury and 
HSB, our estimated incidence of mortality in the single 
injury model is higher than that of the GBD study. This 
is likely due to our effort to calibrate in-hospital mortal-
ity to the results of Kuwabara et al. (2010), who reported 
a national-scale in-hospital mortality of 1.8%. As our 
calibration estimate for the overall level of in-hospital 
mortality was higher than the overall level of mortality 
reported by the GBD, if we assume that those who don’t 
seek health care would be at a higher risk of mortal-
ity than those who don’t, then the differences the num-
ber of deaths and DALYs predicted by our model can be 
explained by the differences in the assumptions made 
with respect to in-hospital mortality.

Fig. 3 The multiple injury model’s predicted incidences of death for different values of rt_emergency_care_ISS_score_cut_off. We find that the 
values 5 to 9 of the parameter rt_emergency_care_ISS_score_cut_off produce levels of HSB which fall within the bounds reported by Zafar et al. 
(2018) and conclude the model’s estimated incidence of mortality ranges from 23.5 to 29.8 per 100,000 person years
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Our estimated incidence of mortality is notably higher 
than the GBD estimate and would indicate a much higher 
health burden brought about in the population of Malawi 
from RTIs. Other estimates for the incidence of mortal-
ity from RTIs in Malawi are also higher than the GBD 
estimate, such as the WHO model (WHO 2015) and the 
results of Samuel et  al. (2012). A recent household sur-
vey in Malawi study estimated 17 RTI deaths per 100,000 
person years (National Statistical Office 2021) (see calcu-
lation in ‘Appendix’).

The GBD estimated incidence of mortality is com-
paratively low compared to other estimates, such as the 
WHO’s estimate. The methodology used for the WHO’s 
model was similar, a country-specific regression model 
considering broadly similar covariates (alcohol, speed 
limit laws, vehicle type, health care access, population 
and economic income) with other additional covariates 
considered in each model. Given the broadly similar fac-
tors considered in predicting mortality between the GBD 
and WHO models, the differences in predicted incidence 
of mortality are surprising. One explanation for the 

GBD estimates being lower than both our model and the 
WHO’s model is the usage of police and hospital data to 
fit their estimated incidence of mortality. Malawi’s police 
and hospital records have been shown to not record 
every fatality (Samuel et al. 2012). Therefore, by calibrat-
ing the model estimates based on these data sources, the 
GBD study would be likely underestimating the extent of 
the deaths caused by RTIs in Malawi.

Our model predicted a greater health burden cause 
by RTIs as is reflected in our model’s predicted num-
ber of DALYs (Fig. 4), which predicts roughly 2 million 
DALYs compared to the 1.3 million predicted by the 
GBD study. In our internal comparison, we find that 
accounting for multiple injuries results in a 22–58% 
increase in the number of DALYs predicted in the 
model. Given the similarities in our assumptions, we 
would expect the single injury form of the model to 
produce a similar number of DALYs as the GBD esti-
mate. However, owing to the greater number of deaths 
predicted in both the single and multiple injury forms 
of our model, our model predicts a greater number 

Fig. 4 The model’s predicted total number of DALYs caused by RTIs between 2010 and 2019 for varying values of rt_emergency_care_ISS_score_
cut_off. The values of rt_emergency_care_ISS_score_cut_off between 5 and 9 produce an overall percentage of HSB which falls within the ranges 
reported by Zafar et al. (2018). From these runs, we conclude that the model predicts roughly 1.8 to 2.3 million DALYs occurring as a result of RTIs
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Fig. 5 A comparison of the GBD RTI model, the single injury model and the multiple injury model. Both the single and multiple injury model 
predicts a higher health burden caused by RTIs than the GBD study, with both predicting a higher incidence of mortality and a greater number of 
DALYs. By comparing the single and multiple injury forms of the model, we see that accounting for multiple injuries led to a roughly 45% increase in 
health burden caused by RTIs

Fig. 6 A comparison of the health burden predicted by the model with and without the health system, a compares the predicted number of DALYs 
and b compares the predicted incidence of mortality
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of DALYs than the GBD model (Fig. 5). The increased 
number of DALYs predicted by our model implies that 
there may be a greater health burden caused by RTIs in 
Malawi than previously thought.

One issue we faced was the uncertainty with respect 
to the percentage of people who sought care. We tried 
to account for this uncertainty by running the model for 
varying parameter values which produced an overall per-
centage of HSB falling within the range reported by Zafar 
et  al. (2018). In each of these runs, the number of inju-
ries and probability of death in hospital was adjusted to 
still match the results of studies from KCH (Tyson et al. 
2015; Sundet et al. 2018), a consequence of this calibra-
tion effort was in different model runs, and a person with 
the same injuries would have a slightly different likeli-
hood of mortality. This run-specific calibration was nec-
essary as there wasn’t a Malawi-specific estimate for HSB, 
but without a set point to calibrate to, we were limited in 
our investigation of the interaction between road traffic 
injury epidemiology, HSB and health system usage.

Both the model’s estimated incidence of mortality and 
number of DALYs are dependent on the overall inci-
dence of RTIs in the population. We calibrated this to 
the 10-year average incidence of RTIs estimated by the 
GBD study. The overall level of incidence reported by the 
GBD study was based on the 2003 World Health Survey 
in Malawi (WHO 2005), producing an estimate of the 
incidence of injuries caused by road traffic crashes which 
would warrant some form of health care. The 2003 World 
Health Survey for Malawi produced an estimated inci-
dence of 3562 RTIs per 100,000, of which we estimate 
954.2 RTIs per 100,000 warrant some form of health 
care. This shared assumption between our model and 
the GBD model neglects to predict the full health burden 
that could be caused by RTIs in Malawi. We believe our 
model offers some improvement to the GBD model’s esti-
mates but without data to measure the health burden of 
all those with RTIs. We cannot truly estimate the exact 
scale of the health burden caused by RTIs, but believe 
that we account for the vast majority of health burden 
with this model.

Modelling discussion
Building a model incorporating as much detail as has 
been included in this model requires a lot of data driven 
parameter estimates in the epidemiological, HSB and 
health system components of the model. Where available, 
we used appropriate parameters from Malawi; for exam-
ple, the HSB model is based entirely on Malawian survey 
data (Ng’ambi et al. 2020a, 2020b) and the health system 
model is based on Malawi’s treatment guidelines (Minis-
try of Health 2015), the Clinton Health Access Initiative 
(CHAI) and EHP datasets (Government of Malawi 2018). 

In Malawi, the majority of the published RTI literature 
comes from central hospitals, some of the countries’ best 
equipped hospitals. Owing to the facilities available at 
this hospital, many severely injured patients are trans-
ferred from other hospitals (e.g. 60.4% of traumatic brain 
injury patients (Eaton et  al. 2017) and 66.7% of spinal 
cord injury patients (Eaton et al. 2019)). This may imply 
that the parameters used to describe certain aspects of 
the model, such as the number of injuries assigned per 
person, would be calibrated to represent severely injured 
patients rather than the average injured person; how-
ever, the percentage of multiple injuries predicted by the 
model do fall within ranges reported from other SSA 
A&E departments (Akinpelu et  al. 2007; Ganveer and 
Tiwari 2005; Madubueze et al. 2010; Sanyang et al. 2017; 
Thanni and Kehinde 2006). When a Malawi-specific 
parameter was not available, we had to look further afield 
to inform our parameter estimates. In such cases, param-
eters based on reports from other Sub-Saharan African 
countries were preferred, but in some instances, we had 
to look for data outside of the continent. The results of 
this model are heavily dependent on the parameters we 
use to make our predictions. We run the risk of assuming 
that the parameters used in the model are the only set of 
parameters which produce reasonable results.

In IBM, the model’s behaviour is established through 
running the model. This approach inherently produces 
stochasticity between runs, so the result of any particu-
lar run is unique to that run and may not truly accurately 
represent the model’s overall behaviour. To overcome 
this, there are two effective strategies. The first is to 
increase the number of individuals in the system (effec-
tively increasing the sample size); the second approach is 
to repeatedly run simulations and take an average of the 
results of all runs. Both strategies to account for stochas-
ticity result in increased computational time. To optimise 
our approach, we investigated the effect of running larger 
population sizes vs repeated model runs in an attempt 
to reduce the standard error of our model’s results in 
the most efficient way possible. We ran the model with a 
large model population size of 1 million and then repeat-
edly sampled the model population in increasing incre-
ments of population size, calculating summary statistics 
relevant to RTI epidemiology. We find that a smaller 
model population size of around 20,000 individuals with 
repeated samples provided an adequate representation of 
a larger model population (see TLO model website) and 
accounts for a large part of the model’s stochasticity.

The results of our model as in the case of all models 
are dependent on the assumptions that we have made. 
For example, the estimate for the incidence of mortality 
produced by our model is dependent on the estimated 
incidence of RTIs predicted in the first place, which we 
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calibrated to the GBD study’s estimated average inci-
dence over the ten-year period. The GBD estimates were 
the only population wide estimate for the incidence of 
RTIs in Malawi that also provided an estimate for the 
incidence of mortality; as such, the results of our model 
are dependent on the validity of the GBD estimates. We 
also based our model’s predicted number of injuries on 
results from a study focusing on paediatric patients (Sun-
det et  al. 2018). There is limited published data on the 
number of injuries caused by RTIs per person in Malawi, 
and age does not appear to be a significant predictor of 
the number of injuries received in road accidents (Nas-
rullah and Muazzam 2012). Another source of uncer-
tainty in our estimates comes from our assumptions of 
the probability of death without medical intervention. 
The only reasonably appropriate estimate which could 
be used to represent the likelihood of death from injury 
without adequate medical care came from a study on mil-
itary-related injuries (Champion et  al. 2010). The inevi-
table limited availability of data to inform this section of 
the model makes the comparison of population health 
burden with and without the health system speculative. 
The results of the health system vs no health system com-
parison present the worst-case scenario RTIs in Malawi, 
predicting 63.15 deaths per 100,000 person years.

In our model, we made simplifying assumptions and 
chose not to include many links between the physical 
world and road traffic injury epidemiology. We did 
not consider physical factors such as vehicle speed, 
road vehicle type and the role of each person in a crash 
(pedestrian, cyclist, motorcyclist, etc.). These amongst 
several other physical factors influence the severity 
of a crash and the health outcomes that follow (Ranti 
et  al. 2015). The effect of certain spatial and tempo-
ral fluctuations is considered in some parts of the TLO 
model. For example, each simulated person belongs to 
a district which will determine certain demographic 
factors about each person. The care the health sys-
tem provides is also spatially dependent, with treat-
ment availability fluctuating over time for each facility 
within each district (a more detailed description of the 
demography and health system models can be found 
on the documentation section of the TLO model web-
site: https:// www. tlomo del. org/ write ups. html). As 
the road traffic injury model makes use of the TLO 
demography and health system models, there is some 
inherited spatial and temporal fluctuations the popula-
tion modelled and the treatment of injuries. However, 
we do not consider the effect of time or space in the 
occurrence of road traffic injuries. This assumption 
was made in an attempt to simplify the model where 
possible, whilst still capturing national average trends 
over the ten-year period of study. Another limitation 

to this model’s approach is the length of the time the 
model takes between updating changes to the popu-
lation and health system availability and usage. The 
smallest increment of time considered in the TLO 
model is 24 h, meaning that we are unable to capture 
the effect of short-term delays in receiving emergency 
care on health outcomes.

Unlike communicable and non-communicable 
health conditions, there is no causal organism or other 
biological aspect that causes RTIs; instead abiotic fac-
tors such as vehicle type, traffic law enforcement, 
road surface and weather amongst others will influ-
ence the number of injurious road accidents and the 
health burden caused by these crashes. In the model 
presented here, we explicitly model population demo-
graphics, population lifestyle, HSB and health care 
availability. This RTIs model is designed to work in 
line with other disease models, all designed with their 
own epidemiological nuances and details to repre-
sent their diseases in the context of Malawi. As such, 
unlike the WHO’s and the GBD’s models discussed 
in this paper, we do not explicitly model aspects of 
the physical world that are included in other models 
of RTIs in Malawi such as traffic legislation, vehicle 
number and vehicle type.

In this paper, we show the strength of an IBM approach 
for modelling the link between epidemiology, HSB and 
health system usage. IBMs more easily allow for com-
plex layering of modelling detail than other model-
ling approaches at the expense of explicit solutions. By 
incorporating greater levels of detail in the model, such 
as additional HSB and the model health system, we can 
investigate the interaction between components, as was 
demonstrated in the single vs multiple injury model 
comparison. In the single vs multiple injury example, we 
manipulated the epidemiology of RTIs; however, this is 
just an example of what is possible with the model. We 
can manipulate any of the modelling components, mak-
ing changes to the road traffic injury, HSB and health 
system models to explore the effects of changes to the 
system.

Through developing the model, we noticed a num-
ber of knowledge gaps in the road traffic injury research 
area. The first issue is that there are limited estimates 
for the incidence of RTIs and road traffic injury deaths 
occurring in Malawi which aren’t based on models. The 
model-based estimates of incidence vary greatly between 
sources, with the GBD predicting an average incidence 
of 954.2 per 100,000 person years from 2020 to 2019 and 
the World Health Survey predicting an incidence of 3562 
per 100,000 person years. The GBD study based their 
estimates incidence of RTIs on the World Health Sur-
vey estimate, only accounting for those injured persons 

https://www.tlomodel.org/writeups.html
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whose injuries would require treatment. Given that many 
injuries will go unreported, we have a limit in our abil-
ity to truly understand the full scale of the road traffic 
injury epidemic in Malawi and in other countries. Unre-
ported injuries also result in a potentially skewed image 
of what the typical injuries that are experience by some-
one involved in a road accident. Based on the currently 
available information, this model and the GBD model 
can use information from hospital A&E reports to pre-
dict the health burden caused by RTIs, but because this 
information is taken from a subsection of all RTIs, any 
predictions on the health burden caused by RTIs are 
extrapolations. This is also an issue for estimating the 
health burden of injuries in general. What we believe 

would be a useful study to truly get understand the full 
extent of the health burden caused by injuries in Malawi 
and elsewhere would be a household survey, which gath-
ered information on the number of people involved in 
RTIs, the number of people who have died as a result 
of RTIs and information relevant to the exact nature of 
injuries received from collisions, such as the number of 
injuries, the type of injuries and the anatomic location of 
injuries. Such a study would provide a clearer image of 
the health burden caused by RTIs. Another general need 
is for complete death registration with cause. Whilst 
death registration is mandated by Malawian law, there 
are known gaps in the recording of deaths (Singogo et al. 
2013).

Table 1 Properties modelled by the road traffic injuries model

These properties were used to keep track of road traffic injuries in the population, the health system usage and health outcomes

Properties modelled

Property name Description

rt_road_traffic_inc Whether this person has been injured in a road traffic crash

rt_date_inj The date which this person was injured in a road accident

rt_date_death_no_med The date which this person’s mortality is determined if they haven’t sought care, assumed to be a 
week after their accident

rt_diagnosed Whether this person has sought care at a hospital and can progress further into the health system

rt_med_int Whether this person is receiving care for their injuries

rt_in_icu_or_hdu Whether this person is in an intensive care or high dependency unit

rt_date_to_remove_daly The dates in which each of this person’s injuries will heal and the DALY weight associated with each 
injury can be removed

rt_in_shock Whether this person is in shock as a result of their injuries

rt_polytrauma Whether this person has two injuries in distinct body regions with an AIS score of 3 or greater

rt_perm_disability Whether this person is permanently disabled as a result of their injuries

rt_recovery_no_med Whether this person’s injuries healed without the use of the health system

rt_injury_1, rt_injury_2, rt_injury_3, rt_injury_4, 
rt_injury_5, rt_injury_6, rt_injury_7, rt_injury_8,

The injuries this person received from their road accident, with the above injuries being stored as 
codes in these properties

rt_injury_severity The severity status of this person’s injuries, none, mild or severe

rt_ISS_score The injury severity score of this person

rt_MAIS_military_score The maximum military abbreviated injury score associated with this person’s injuries

rt_disability The DALY weight associated with this person’s injuries, capped between 0 and 1

rt_debugging_DALY_wt The true DALY weight associated with this person’s injuries, uncapped

rt_injuries_to_cast Injuries of this person determined to be treated by fracture cast or sling

rt_injuries_for_minor_surgery Injuries of this person determined to be treated with a minor surgery

rt_injuries_for_minor_surgery Injuries of this person determined to be treated with a major surgery

rt_injuries_for_open_fracture_treatment Injuries of this person determined to be treated with an open fracture treatment plan

rt_injuries_to_heal_with_time Injuries which will heal over time without specific interventions

rt_injuries_left_untreated The person’s injuries that have been left untreated

rt_imm_death Whether this person died on the scene of the crash or not

rt_death_no_med Whether this person died without seeking medical care

rt_post_med_death Whether this person died from their injuries despite medical intervention

rt_unavilable_med_death Whether this person died after seeking medical care due to the unavailability of certain treatments

rt_death_from_shock Whether this person died from shock
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Table 2 Parameters used in the model, with name, description, value and source/calibration process

Parameter Description Value Source

Who is injured in a road traffic crash this month?

Base_rate_injrti The base rate of which the model 
population is involved in road traf‑
fic collisions per month. Specifically, 
a woman above the age of 80 who 
doesn’t drink

Run‑specific, see Table 4 Calibrated to GBD estimated inci‑
dence of RTI

rr_injrti_age04 The risk factor for having a road 
traffic injury associated with being 
aged 0–4

0.145533 Calibrated to GBD estimated inci‑
dence of RTI

rr_injrti_age59 The risk factor for having a road 
traffic injury associated with being 
aged 5–9

0.551895 Calibrated to GBD estimated inci‑
dence of RTI

rr_injrti_age1017 The risk factor for having a road 
traffic injury associated with being 
aged 10–17

0.967017 Calibrated to GBD estimated inci‑
dence of RTI

rr_injrti_age1829 The risk factor for having a road 
traffic injury associated with being 
aged 18–29

1.184184 Calibrated to GBD estimated inci‑
dence of RTI

rr_injrti_age3039 The risk factor for having a road 
traffic injury associated with being 
aged 30–39

1.052843 Calibrated to GBD estimated inci‑
dence of RTI

rr_injrti_age4049 The risk factor for having a road 
traffic injury associated with being 
aged 40–49

1.074376 Calibrated to GBD estimated inci‑
dence of RTI

rr_injrti_age5059 The risk factor for having a road 
traffic injury associated with being 
aged 50–59

1.336449 Calibrated to GBD estimated inci‑
dence of RTI

rr_injrti_age6069 The risk factor for having a road 
traffic injury associated with being 
aged 60–69

2.308514 Calibrated to GBD estimated inci‑
dence of RTI

rr_injrti_age7079 The risk factor for having a road 
traffic injury associated with being 
aged 70–79

4.031226 Calibrated to GBD estimated inci‑
dence of RTI

rr_injrti_male The risk factor for having a road 
traffic injury associated with being 
male

2.7 Calibrated to GBD estimated inci‑
dence of RTI

rr_injrti_excessalcohol The risk factor for having a road 
traffic injury associated with 
consuming excessive amounts of 
alcohol

6.53 Staton et al. (2018)

Did the injured persons die on the scene of the crash

imm_death_proportion_rti The proportion of persons injured 
in a road traffic collision who expe‑
rience pre‑hospital mortality

0.018 Mulima et al. (2021)

What injuries did each injured person receive?

number_of_injured_body_
regions_distribution

The distribution used to assign the 
number of injured body regions for 
each injured person

Run‑specific, see Table 4 Distributions calibrated to the results 
of Sundet et al. (2018)

injury_location_distribution The distribution used to assign the 
anatomic location of the person’s 
injuries

Location Probability Ranti et al. (2015), Otieno et al. (2004)

Head 14.38

Face 13.25

Neck 2.1

Thorax 9.45

Abdomen 6.12

Spine 1.55

Upper Extremity 16.85

Lower Extremity 36.3
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Table 2 (continued)

Parameter Description Value Source

head_prob_112 Probability of an unspecified skull 
fracture

0.0455 Eaton et al. (2017), Global Health 
Data (2017)

head_prob_113 Probability of a basilar skull fracture 0.0045 Eaton et al. (2017), Global Health 
Data (2017)

head_prob_133a Probability of a subarachnoid 
hematoma

0.09149906 Carroll et al. (2010), Global Health 
Data (2017), Eaton et al. (2017)

head_prob_133b Probability of a brain contusion 0.301946898 Carroll et al. (2010), Global Health 
Data (2017), Eaton et al. (2017)

head_prob_133c Probability of an intraventricular 
haemorrhage

0.013724859 Carroll et al. (2010), Global Health 
Data (2017), Eaton et al. (2017)

head_prob_133d Probability of a subgaleal hema‑
toma

0.050324483 Carroll et al. (2010), Global Health 
Data (2017), Eaton et al. (2017)

head_prob_134a Probability of an epidural hema‑
toma

0.086670324 Carroll et al. (2010), Global Health 
Data (2017), Eaton et al. (2017)

head_prob_134b Probability of a subdural hema‑
toma

0.080003376 Carroll et al. (2010), Global Health 
Data (2017), Eaton et al. (2017)

head_prob_135 Probability of a diffuse axonal 
injury/midline shift

0.061731 Carroll et al. (2010), Global Health 
Data (2017), Eaton et al. (2017)

head_prob_1101 Probability of a laceration to the 
head

0.253536 Malm et al. (2008), Global Health Data 
(2017)

head_prob_1114 Probability of a burn to the head 0.010564 Tian et al. (2018), Global Health Data 
(2017)

face_prob_211 Probability of a facial fracture 
(nasal/unspecified)

0.158585 Hassan (2016)

face_prob_212 Probability of a facial fracture (man‑
dible/zygomatic)

0.294515 Hassan (2016)

face_prob_241 Probability of a soft tissue injury 
to face

0.339 Hassan (2016)

face_prob_2101 Probability of a laceration to the 
face

0.194845 Malm et al. (2008), Global Health Data 
(2017)

face_prob_2114 Probability of a burn to the face 0.010255 Tian et al. (2018), Global Health Data 
(2017)

face_prob_291 Probability of an eye injury 0.0028 Hassan (2016)

neck_prob_3101 Probability of a laceration to the 
neck

0.06972 Malm et al. (2008), Global Health Data 
(2017)

neck_prob_3113 Probability of a burn to the neck 0.01428 Tian et al. (2018), Global Health Data 
(2017)

neck_prob_342 Probability of a soft tissue injury in 
neck (vertebral artery laceration)

0.004 Kasantikul et al. (2003)

neck_prob_343 Probability of a soft tissue injury in 
neck (pharynx contusion)

0.004 Kasantikul et al. (2003)

neck_prob_361 Probability of a Sternomastoid m. 
haemorrhage/Haemorrhage, supra‑
clavicular triangle/Haemorrhage, 
posterior triangle/Anterior vertebral 
vessel haemorrhage/Neck muscle 
haemorrhage

0.495 Kasantikul et al. (2003)

neck_prob_363 Probability of a Hematoma in 
carotid sheath/Carotid sheath 
haemorrhage

0.405 Kasantikul et al. (2003)

neck_prob_322 Probability of an atlanto‑occipital 
subluxation

0.00264 Kasantikul et al. (2003)

neck_prob_323 Probability of an atlanto‑axial 
subluxation

0.00536 Kasantikul et al. (2003)

thorax_prob_4101 Probability of a laceration to the 
thorax

0.49036 Malm et al. (2008), Global Health Data 
(2017)
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Table 2 (continued)

Parameter Description Value Source

thorax_prob_4113 Probability of a burn to the thorax 0.04264 Tian et al. (2018), Global Health Data 
(2017)

thorax_prob_461 Probability of chest wall bruises/
haematoma

0.0945 Okugbo et al. (2012)

thorax_prob_463 Probability of haemothorax 0.0945 Okugbo et al. (2012)

thorax_prob_453a Probability of a lung contusion 0.0539 Okugbo et al. (2012)

thorax_prob_453b Probability of a diaphragm rupture 0.0161 Okugbo et al. (2012)

thorax_prob_412 Probability of fractured ribs 0.0392 Okugbo et al. (2012)

thorax_prob_414 Probability of flail chest 0.0098 Okugbo et al. (2012)

thorax_prob_441 Probability of chest wall lacera‑
tions/avulsions

0.08586 Okugbo et al. (2012)

thorax_prob_442 Probability of surgical emphysema 0.01749 Okugbo et al. (2012)

thorax_prob_443 Probability of closed pneumotho‑
rax/open pneumothorax

0.05565 Okugbo et al. (2012)

abdomen_prob_5101 Probability of a laceration to the 
abdomen

0.11026 Malm et al. (2008), Global Health Data 
(2017)

abdomen_prob_5113 Probability of a burn to the abdo‑
men

0.03874 Tian et al. (2018), Global Health Data 
(2017)

abdomen_prob_552 Probability of an injury to stomach/
intestines/colon

0.047656 Global Health Data (2017), Ruhinda 
et al. (2008)

abdomen_prob_553 Probability of injury to spleen/
Urinary bladder/Liver/Urethra/
Diaphragm

0.77441 Global Health Data (2017), Ruhinda 
et al. (2008)

abdomen_prob_554 Probability of an injury to kidney 0.028934 Global Health Data (2017), Ruhinda 
et al. (2008)

spine_prob_612 Probability of fractured vertebrae 0.364 Biluts et al. (2015)

spine_prob_673a Probability of a spinal cord injury at 
neck level with an AIS score of 3

0.015840216 Biluts et al. (2015), Stephan et al. 
(2015)

spine_prob_673b Probability of a spinal cord injury 
below neck level with an AIS score 
of 3

0.040731984 Biluts et al. (2015), Stephan et al. 
(2015)

spine_prob_674a Probability of a spinal cord injury at 
neck level with an AIS score of 4

0.074477731 Biluts et al. (2015), Stephan et al. 
(2015)

spine_prob_674b Probability of a spinal cord injury 
below neck level with an AIS score 
of 4

0.116490809 Biluts et al. (2015), Stephan et al. 
(2015)

spine_prob_675a Probability of a spinal cord injury at 
neck level with an AIS score of 5

0.134791137 Biluts et al. (2015), Stephan et al. 
(2015)

spine_prob_675b Probability of a spinal cord injury 
below neck level with an AIS score 
of 5

0.210827163 Biluts et al. (2015), Stephan et al. 
(2015)

spine_prob_676 Probability of a spinal cord injury at 
neck level with an AIS score of 6

0.04284096 Biluts et al. (2015), Stephan et al. 
(2015)

upper_ex_prob_7101 Probability of a laceration to the 
upper extremities

0.43896 Malm et al. (2008), Global Health Data 
(2017)

upper_ex_prob_7113 Probability of a burn to the upper 
extremities

0.03304 Tian et al. (2018), Global Health Data 
(2017)

upper_ex_prob_712a Probability of a fracture to Clavicle, 
scapula, humerus

0.10802 Global Health Data (2017)

upper_ex_prob_712b Probability of a fracture to Hand/
wrist

0.28969 Global Health Data (2017)

upper_ex_prob_712c Probability of a fracture to Radius/
ulna

0.09329 Global Health Data (2017)

upper_ex_prob_722 Probability of a dislocated shoulder 0.025 Global Health Data (2017)

upper_ex_prob_782a Probability of an amputated finger 0.00750024 Global Health Data (2017)
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Table 2 (continued)

Parameter Description Value Source

upper_ex_prob_782b Probability of a unilateral arm 
amputation

0.00102276 Global Health Data (2017)

upper_ex_prob_782c Probability of a thumb amputation 0.002841 Global Health Data (2017)

upper_ex_prob_783 Probability of a bilateral upper 
extremity amputation

0.000636 Global Health Data (2017)

lower_ex_prob_8101 Probability of a laceration to the 
lower extremity

0.186094109 Malm et al. (2008), Global Health Data 
(2017)

lower_ex_prob_8113 Probability of a burn to the lower 
extremity

0.014007083 Tian et al. (2018), Global Health Data 
(2017)

lower_ex_prob_811 Probability of a foot fracture 0.023610948 Global Health Data (2017)

lower_ex_prob_813do Probability of an open foot fracture 0.013281158 Global Health Data (2017), Court‑
Brown et al. (2012). Chagomerana 
et al. (2017)

lower_ex_prob_812 Probability of a fracture to patella, 
tibia, fibula, ankle

0.354164215 Global Health Data (2017)

lower_ex_prob_813eo Probability of an open fracture to 
patella, tibia, fibula, ankle

0.199217371 Global Health Data (2017), Court‑
Brown et al. (2012), Chagomerana 
et al. (2017)

lower_ex_prob_813a Probability of a hip fracture 0.029513685 Global Health Data (2017)

lower_ex_prob_813b Probability of a pelvis fracture 0.023610948 Global Health Data (2017)

lower_ex_prob_813bo Probability of an open pelvis 
fracture

0.005902737 Global Health Data (2017), Court‑
Brown et al. (2012), Chagomerana 
et al. (2017)

lower_ex_prob_813c Probability of a femur fracture 0.076765094 Global Health Data (2017)

lower_ex_prob_813co Probability of an open femur 
fracture

0.01177596 Global Health Data (2017), Court‑
Brown et al. (2012), Chagomerana 
et al. (2017)

lower_ex_prob_822a Probability of a dislocated hip 0.037338982 Global Health Data (2017)

lower_ex_prob_822b Probability of a dislocated knee 0.002383339 Global Health Data (2017)

lower_ex_prob_882 Probability of a amputation of toes 0.00731139 Global Health Data (2017)

lower_ex_prob_883 Probability of a unilateral lower leg 
amputation

0.007511491 Global Health Data (2017)

lower_ex_prob_884 Probability of a bilateral lower leg 
amputation

0.007511491 Global Health Data (2017)

Did they go on to seek health care for their injuries?

rt_emergency_care_ISS_score_
cut_off

The ISS score above which people 
will automatically go to seek health 
care

Run‑specific, see Table 4 Calibrated to the results of Zafar et al. 
(2018)

If they sought health care for their injuries, what do they need from the health system for their treatment?

mean_los_ISS_less_than_4 The mean length of stay for a per‑
son with an ISS score less than 4

4.97 Lee et al. (2016)

sd_los_ISS_4_to_8 Variation length of stay for those 
with an ISS score between 4 and 8

5.93 Lee et al. (2016)

mean_los_ISS_9_to_15 Mean length of stay for those with 
an ISS score between 9 and 15

15.46 Lee et al. (2016)

sd_los_ISS_9_to_15 Variation in length of stay for those 
with an ISS score between 9 and 15 
(Lee et al. 2016)

11.16 Lee et al. (2016)

mean_los_ISS_16_to_24 Mean length of stay for those with 
an ISS score between 16 and 24

24.73 Lee et al. (2016)

sd_los_ISS_16_to_24 Variation in length of stay for those 
with an ISS score between 16 and 
24

17.03, Lee et al. (2016)

mean_los_ISS_more_than_25 Mean length of stay for those with 
an ISS score greater than 25

30.86 Lee et al. (2016)
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Table 2 (continued)

Parameter Description Value Source

sd_los_ISS_more_that_25 Variation length of stay for those 
with an ISS score greater than 25

34.03 Lee et al. (2016)

prob_dislocation_requires_surgery Probability that a dislocation will 
require a surgery

0.01 Dummy variable used toaccount for 
the fact that some dislocations will 
require surgery

prob_depressed_skull_fracture Probability that the person’s skull 
fracture is depressed and will 
require surgery

0.14 Eaton et al. (2017)

prob_open_fracture_contami‑
nated

Probability that the person’s open 
fracture is contaminated

0.07 Chagomerana et al. (2017)

Based on their choice to seek or not seek health care what health outcomes did each person experience (mortality, morbidity or recovery)?

prob_death_iss_less_than_9 The probability of mortality associ‑
ated with an ISS score less than 9 
with medical treatment

Run‑specific, see Table 4 Kuwabara et al. (2010), Tyson et al. 
(2015)

prob_death_iss_10_15 The probability of mortality associ‑
ated with an ISS score between 10 
and 15 with medical treatment

Run‑specific, see Table 4 Kuwabara et al. (2010), Tyson et al. 
(2015)

prob_death_iss_16_24 The probability of mortality associ‑
ated with an ISS score between 16 
and 24 with medical treatment

Run‑specific, see Table 4 Kuwabara et al. (2010), Tyson et al. 
(2015)

prob_death_iss_25_35 The probability of mortality associ‑
ated with an ISS score between 25 
and 35 with medical treatment

Run‑specific, see Table 4 Kuwabara et al. (2010), Tyson et al. 
(2015)

prob_death_iss_35_plus The probability of mortality associ‑
ated with an ISS score greater than 
35 with medical treatment

Run‑specific, see Table 4 Kuwabara et al. (2010), Tyson et al. 
(2015)

prob_death_MAIS1 The probability of death associated 
with a MAIS score of 1

0 Champion et al. (2010)

prob_death_MAIS2 The probability of death associated 
with a MAIS score of 2

0 Champion et al. (2010)

prob_death_MAIS3 The probability of death associated 
with a MAIS score of 3

0.05 Champion et al. (2010)

prob_death_MAIS4 The probability of death associated 
with a MAIS score of 4

0.31 Champion et al. (2010)

prob_death_MAIS5 The probability of death associated 
with a MAIS score of 5

0.59 Champion et al. (2010)

prob_death_MAIS6 The probability of death associated 
with a MAIS score of 6

0.83 Champion et al. (2010)

prob_perm_disability_with_treat‑
ment_severe_TBI

The probability that a person with 
a traumatic brain injury will be left 
permanently disabled

0.199 Eaton et al. (2017)

prob_perm_disability_with_treat‑
ment_sci

The probability that a person with 
a traumatic brain injury will be left 
permanently disabled

0.436 Eaton et al. (2019)

The overall Thanzi La Onse model is built with a mod-
ular disease epidemiology design. Just as we manipulated 
HSB by including and not including the HSB model, we 
can manipulate the model by including other disease 
modules and simultaneously examine how several dis-
eases interact with and compete with the health system. 
The inclusion of other modules will allow a full picture of 
Malawi’s population health which will be useful in plan-
ning public health expenditure.

Conclusions
This paper introduces a novel mathematical modelling 
framework for modelling road traffic injuries with a level 
of detail that had previously not been achieved. We used 
this model to produce an estimated number of deaths 
and DALYs caused by RTIs in Malawi, finding that esti-
mated 23.5–29.8 deaths occur per 100,000 person years 
and estimated 180,000–225,000 DALYs occurred per year 
in an estimated population of 1,364,000 in Malawi.
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Appendix
Calculating estimates of incidence of road traffic injuries 
and road traffic injury deaths from survey data
Incidence of road traffic injuries, World Health Survey
The sample size of this study was 5297, of which 3.5% 
were injured in a road accident, with rounding this indi-
cates 185 people were injured over the course of the 
study (WHO 2005). The study questioned participants 
about injuries in the last year; if we assume that on aver-
age each injury occurred 6 months prior to question, we 
establish our estimate as (Table 1):

Incidence of road traffic injury death, integrated household 
survey
The data for this survey were collected by asking a 
member of the household about their and other peo-
ple in the household’s health experience in the past 2 
years (National Statistical Office 2021). This data also 

Incidence of RTI person year =
185

5297− 0.5× 185
= 0.03562

Incidence of RTI 100, 000 person years = 3562

established the number of people in each household. 
This survey found 17 road traffic injury deaths within 
the households surveyed over the past two years. At the 
time of the survey, a total of 50,476 people had been 
accounted for in the survey, either directly reporting to 
the interviewers or having their past health experiences 
accounted for by a member of the household. If we again 
assume that on average the road traffic injury deaths 
occurred halfway through the study (in this case a two-
year study), we can establish an estimate for the inci-
dence of mortality as (Table 2):

Number of injuries assigned per person
We fit the distribution to the following (x, y) data points: 
(1, % single injuries), (2, (% multiple injuries)/2) and (9, 
0). We ran the model with several of the resulting distri-
butions using Azure batch computing and calculated the 

Incidence of RTI death per person year

=

17

50476× 2− 17× 1
= 0.000168

Incidence of RTI death per 100, 000 person years = 16.8

Fig. 7 An example distribution of number of injuries assigned to each per person and the resulting average number of injuries per person resulting 
from the distribution compared to the results of Sundet et al. (2018)
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average number of injuries in RTI hospital patients; the 
resulting number of distributions produced a 71:29 to 
76:24 single-to-multiple injury ratio depending on other 
model parameter values (Table 3).

An example of one probability distribution and resulting 
number of injuries in and out of hospital per person com-
pared to the results of Sundet et al. (2018) is given in Fig. 7.

Determining the number of runs
To determine the number of runs we should use for each 
of the scenarios tested in the model, we aimed to find a 

small number of model runs which produced results 
which reliably fell within the ranges of our calibration 
targets. We began by running the model for a total of 20 
model runs, each over the course of 10 years with a popu-
lation of 20,000. We then sampled from these runs with 
an increasing sample size, selecting N runs at random for 
N = 1, 2, …, 20. We calculated the mean incidence of road 
traffic injuries between each run for each sample size and 
then repeated this process 100 times for each sample size. 
We decided on 4 runs per scenario as the mean incidence 
of road traffic injuries consistently fell within the 95% 
uncertainty interval reported in the GBD study (Table 4) 
(Fig. 8).

Fig. 8 The effect on the number of model runs on the average incidence of road traffic injuries in the model. For each number of samples (x‑axis), 
we sampled N runs from the 20 model runs 100 times. We then plotted the average incidence of road traffic injuries between the N model runs as 
circles, associated with the number of runs sampled per time. We then plotted the 95% uncertainty interval of the incidence of road traffic injuries 
between 2010 and 2019 taken from the GBD study (shown in blue). We find that all of the 20 model runs fell within the 95% uncertainty interval of 
incidence of road traffic injuries within the GBD study
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Table 4 As we had no specific calibration target for overall health seeking behaviour, other than a range of values from Zafar et al. 
(2018), we had to establish a parameter space for ‘rt_emergency_care_ISS_score_cut_off’, a parameter which influences the overall 
level of health seeking behaviour in the model

Emergency care ISS 
score cut-off

Base rate of injury, calibrated for each value of the emergency ISS cut-
off score to produce an incidence of road traffic injuries equal to the 
average GBD estimates from 2010 to 2019

Number of injury 
distribution, 
calibrated for 
each value of 
the emergency 
ISS cut-off score 
to produce an 
average number of 
injuries for those 
who sought care 
as was reported in 
Sundet et al. (2018)

Probability of 
in-hospital mortality 
for the ISS score 
boundary per run

1 0.0044 1 0.7094 ISS < 9 0.011

2 0.2062 10 ≤ ISS ≤ 15 0.016

3 0.0599 16 ≤ ISS ≤ 24 0.048

4 0.0174 25 ≤ ISS ≤ 35 0.204

5 0.0051 ISS > 35 0.346

6 0.0015

7 0.0004

8 0.0001

2 0.0043 1 0.7094 ISS < 9 0.009

2 0.2062 10 ≤ ISS ≤ 15 0.013

3 0.0599 16 ≤ ISS ≤ 24 0.037

4 0.0174 25 ≤ ISS ≤ 35 0.156

5 0.0051 ISS > 35 0.266

6 0.0015

7 0.0004

8 0.0001

3 0.0044 1 0.7094 ISS < 9 0.008

2 0.2062 10 ≤ ISS ≤ 15 0.012

3 0.0599 16 ≤ ISS ≤ 24 0.034

4 0.0174 25 ≤ ISS ≤ 35 0.146

5 0.0051 ISS > 35 0.248

6 0.0015

7 0.0004

8 0.0001

4 0.0043 1 0.7094 ISS < 9 0.008

2 0.2062 10 ≤ ISS ≤ 15 0.013

3 0.0599 16 ≤ ISS ≤ 24 0.036

4 0.0174 25 ≤ ISS ≤ 35 0.154

5 0.0051 ISS > 35 0.262

6 0.0015

7 0.0004

8 0.0001

5 0.0041 1 0.76127 ISS < 9 0.007

2 0.18174 10 ≤ ISS ≤ 15 0.013

3 0.04339 16 ≤ ISS ≤ 24 0.031

4 0.01036 25 ≤ ISS ≤ 35 0.131

5 0.00247 ISS > 35 0.223

6 0.00059

7 0.00014
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