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Abstract

Background: Motor vehicle crashes remain the leading cause of teen deaths in spite of preventive efforts.
Prevention strategies could be advanced through new analytic approaches that allow us to better conceptualize
the complex processes underlying teen crash risk. This may help policymakers design appropriate interventions and
evaluate their impacts.

Methods: System Dynamics methodology was used as a new way of representing factors involved in the
underlying process of teen crash risk. Systems dynamics modeling is relatively new to public health analytics and is
a promising tool to examine relative influence of multiple interacting factors in predicting a health outcome.
Dynamics models use explicit statements about the process being studied and depict how the elements within the
system interact; this usually leads to discussion and improved insight. A Teen Driver System Model was developed
by following an iterative process where causal hypotheses were translated into systems of differential equations.
These equations were then simulated to test whether they can reproduce historical teen driving data. The Teen
Driver System Model that we developed was calibrated on 47 newly-licensed teen drivers. These teens were
recruited and followed over a period of 5-months. A video recording system was used to gather data on their
driving events (elevated g-force, near-crash, and crash events) and miles traveled.

Results: The analysis suggests that natural risky driving improvement curve follows a course of a slow
improvement, then a faster improvement, and finally a plateau: that is, an S-shaped decline in driving events.
Individual risky driving behavior depends on initial risk and driving exposure. Our analysis also suggests that teen
risky driving improvement curve is created endogenously by several feedback mechanisms. A feedback mechanism
is a chain of variables interacting with each other in such a way they form a closed path of cause and effect
relationships.

Conclusions: Teen risky driving improvement process is created endogenously by several feedback mechanisms.
The model proposed in the present article to reflect this improvement process can spark discussion, which may
pinpoint to additional processes that can benefit from further empirical research and result in improved insight.
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Background
Adolescents make up an important segment of the U.S.
population. There were 41.6 million adolescents in 2010
and this population is expected to reach 42.4 million by
2020, and a record of 50 million by 2040 (U.S. Census
Bureau, 2000a; U.S. Census Bureau, 2000b). Protecting
young people from health risks is critical for a country’s
future because healthy adolescents are an important
asset and resource for social and economic development.
Despite the tremendous efforts made in recent years to-
wards improving overall health status of adolescents,
motor vehicle crashes continue to be the most frequent
cause of death for individuals 13–19 years of age (http://
webappa.cdc.gov/sasweb/ncipc/leadcaus10_us.html).
While teen crash fatality rates have declined in recent
years, current crash rates still have a serious human and
economic cost. In the US in 2016, 2820 teenagers ages
13–19 died in motor vehicle crashes, representing on
average 8 deaths each day (http://www.iihs.org/iihs/
topics/t/teenagers/fatalityfacts/teenagers). The financial
burdens of motor vehicle crashes in adolescence are
large and far-reaching. Although young individuals ac-
count for only 14% of the U.S. population, they represent
30% ($19 billion) of the total costs of automobile injuries
among males and 28% ($7 billion) among females
(http://www.cdc.gov/Motorvehiclesafety/Teen_Drivers/
teendrivers_factsheet.html).
Epidemiological profiles of teen crash risk show a rise

in crash rates immediately post-licensure with a peak
during the second month, after which the rate starts to
decline (Lewis-Evans, 2010; Chapman et al., 2014). Re-
searchers have collectively explained the decline in teen
crash risk by accumulation of driving experience (May-
hew et al., 2003; McCartt et al., 2003; McKnight A J and
McKnight A S, 2003). However, the mechanisms under-
lying the peak in crash rates during the second month
after licensure rather than the first month are poorly
understood. Hypotheses to explain the peak in crash
rates during the second month have broadly focused on
increase in driving exposure (Chapman et al., 2014). This
hypothesis was dismissed by a study showing that dan-
gerous driving events representing surrogates for crashes
peaked during the second month after licensure rather
than the first month after accounting for driving expos-
ure (Missikpode et al., 2018). Therefore, the peak in
crash rates during the second month post-licensure ra-
ther than the first month remains a puzzle.
Research on crash risk factors among novice teen

drivers has been intense, and evidence suggests that a di-
verse range of factors influence teen crash risk. These in-
clude but are not limited to: (i) lack of experience; (ii)
individual-level factors such as age, gender, maturation;
(iii) behavioral factors such as distraction (e.g., cell
phone use while driving, teen passengers), driving over

the speed limit; (iv) environmental factors such as road
conditions and weather (Ivers et al., 2009; Turner and
McClure, 2003; Rhodes and Pivik, 2011; Massie et al.,
1995; Zwerling et al., 2005; Kmet and Macarthur, 2006).
How do we think about, and analytically grapple with,
the potential contribution of all these factors influencing
teen crash risk? Although lack of experience is clearly
linked to crash involvement among novice teen drivers,
driving experience is in turn shaped by the number of
crash events. For example, an analysis of a naturalistic
driving data using a Bayesian multivariate Poisson log-
normal model has shown that drivers involved in more
crashes in the past year were less likely to be involved in
a crash in the next year (Wu et al., 2014). Similarly, even
though risk-taking behaviors are linked to increased
crash risk, previous crashes could also be a determinant
of tendency of engaging in risk-taking behaviors. More-
over, parents may impose restrictions on access to the
car when the teen has been involved in a crash, further
slowing the teen’s driving experience. It would be a sub-
stantial assumptive stretch to argue that there is a linear
relationship, for example, between driving experience
and crash risk, and even more of a stretch to argue that
any hypothesized parametric relation is consistent over
time across factors influencing crash involvement. Thus,
there are clear interrelations between crash factors, and
it is, therefore, likely that these factors are not easily pa-
rameterized. Although regression-based models are
helpful at isolating independent relationships between
covariates and outcomes while accounting for con-
founders, they are poorly suited to deal with these com-
plications. These traditional research methods do little
to take into account the dynamic and reciprocal rela-
tions between some ‘exposures’ and ‘outcomes’, discon-
tinuous relations or changes in the relations between
‘exposures’ and ‘outcomes’ over time.
Systems dynamics modeling is an alternative approach,

which examines system influences and their interplay,
and is able to handle feedback loops and complex inter-
actions between variables. Unlike the traditional epi-
demiological methodology which often studies risk
factors in isolation, this approach investigates how the
different crash factors fit together, interact, and change
over time. Instead of ignoring these feedback processes,
a system dynamic approach explicitly models these pro-
cesses and investigates how these feedback mechanisms
contribute to the patterns observed. This process-driven
approach may provide a theoretical explanation for the
significant differences in the distribution of crashes
within the young driver population as some teenage
drivers have no crashes and others have several
(Simons-Morton et al., 2006; Simons-Morton et al.,
2011, Li et al., 2011; O’Malley and Johnston, 2003).
Thus, viewing adolescent crash risk from a systems
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perspective may allow one to conceptualize crashes that
might seem irrational and disparate within a framework
that gives meaning and sense to these crashes.
The primary goal of this study was to develop a con-

ceptual framework of teen risky driving improvement
curve using system dynamics methodology. Using this
conceptual framework as a guide, we leveraged an un-
derstanding of the dynamic process underlying patterns
in teen risky driving over time. This framework may be
used for teen driving policy analysis.

Methods
Data source
A sample of newly-licensed teen drivers and at least one
of their parents was recruited from high schools in Iowa
City and Des Moines, Iowa and surrounding areas for a
randomized controlled trial (can be found online at:
https://clinicaltrials.gov/ct2/show/NCT01624597). This
study analyzed 47 participants assigned to the control
group, who received no driving intervention throughout
the five months of their study participation. Teenaged
drivers were eligible if they received their Intermediate
License during the study period, which in Iowa repre-
sents the first opportunity for unsupervised driving. The
teens recruited had access to a vehicle for which they
were the primary driver. At the time of recruitment,
drivers were around the ages of 16 years. Consent was
obtained from parents and teens, and the study proto-
cols were reviewed and approved by the University of
Iowa Institutional Review Board.
Each participant’s vehicle was equipped with in-vehicle

instrumentation developed by Lytx to capture driving
events and driving trips. The device was installed a few
days before or the day the teen received his/her inter-
mediate license. However, data collection started the day
the license was obtained and lasted five months. The de-
vice had two cameras and was attached to the wind-
shield behind the rear-view mirror of the vehicle, and
recorded video of the interior, forward and rearward of
the vehicle. This strategic position of the device allowed
to determine whether the driver was a study participant.
The video recording system, which continuously buff-
ered video, were triggered to record when acceleration/
deceleration or lateral movement exceeded a pre-set
threshold of 0.5 g, a force that is noticeable and uncom-
fortable to the vehicle occupants. All triggered events
were automatically downloaded from the device and
transferred to the University of Iowa laboratory via a se-
cure wireless connection to Lytx, where videos were
reviewed to exclude non-participating drivers and false
triggers. All eligible triggered events were reviewed and
reconciled by two trained coders. All videos were
reviewed to check for any risky driving behaviors (e.g.,
driving over the speed limit, cell phone use while

driving). Data were also collected on miles traveled
through odometer readings of the video recording
system.
For this study, the main outcome of interest was driv-

ing events. Driving events spanned the full range of
g-force events, near-crash events, and crash events.
G-force events were detected by accelerometers on the
video recording system, and occurred as a result of ac-
celerating rapidly, decelerating late and abruptly, sharp
cornering, and over-correcting after a turn. A g-force
event occurred when the driver’s actions resulted in a
g-force > 0.5 g or g-force <− 0.5 g. A study has shown
that g-force events are useful surrogates for crashes
(Simons-Morton et al., 2012). Near-crash events were
g-force events in which an evasive maneuver was per-
formed by the teenager in order to avoid a collision
(braking > 0.65 g, deceleration > 0.5 g in < 0.5 s; proxim-
ity to another vehicle/object; squealing of tires). Crash
events were events that resulted in a collision with an
object or another vehicle. Events that were not the teen-
age driver’s fault (e.g., braking for another vehicle) were
not included in the current analyses.

Model development
Dynamics models use explicit statements about system
structure to map a problem and depict how the elements
within the system interact (Sterman, 2000). Figure 1 pre-
sents the causal diagram resulting from our work to
conceptualize factors shaping teen crash risk. We devel-
oped this conceptual framework via an iterative process.
Key hypothesized factors influencing the dynamics of
teen crash risk include accumulated driving and recent
crashes. Accumulated driving (i.e., accumulated mileage
at the wheel) causes teen crash risk to decline over time
(Graham and Gootman, 2008), as it allows the novice

monthly driving

events per mile

events per month

recent events

-

+

+
+

driving build-up
+

-
-

Fig. 1 Causal loop diagram. The single arrows (in blue) represent
causal relationships. A causal relationship linking together two
variables is represented by an arrow pointing from the independent
to the dependent variable. A sign (+) means the independent
variable causes the dependent variable to increase. A sign (−) means
the independent variable causes the dependent variable to decrease
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driver to develop the skills and attitudes essential for
safe driving. Recent crashes are associated with de-
creased crash risk in the future (Wu et al., 2014). The
underlying mechanisms of this association are not
known. This association may be partially mediated via
risk-taking behaviors (e.g., driving over the speed limit)
as recent crashes may decrease the tendency of engaging
in risk-taking behaviors. While acknowledging the im-
portance of risk-taking behaviors as an important crash
risk factor, our model followed the assumption that this
variable is an intermediate variable between recent
crashes and current crash risk. The model further as-
sumes that recent crashes are associated with less driv-
ing, perhaps via fear of driving or driving restrictions
imposed by parents because of crash involvement. For
this study, we combined crash events and their surro-
gates (g-force and near-crash events) into a single meas-
ure called “events”. Our dynamic hypothesis is that the
natural teen risky driving improvement curve is slow im-
provement followed by faster improvement, and finally a
plateau: that is, an S-shaped decline in driving events.
Through an extensive process of testing and evalu-

ation, several model structures were investigated. The
model presented in Fig. 2 emerged from that process as
the simplest dynamic hypothesis that adequately cap-
tured patterns in teen risky driving. This model is a de-
terministic ordinary differential equation model that
captures the interactions among amount of driving,
events per month, recent events, events per mile, and
their evolution through time. The model was developed
to reproduce monthly amount of driving and monthly
driving events for each teenage driver, while also seeking
to understand the dynamic processes underlying these

time series. The results of two other simple models that
were considered but failed model validity tests can be
found in the Additional file 1. These models failed be-
havioral tests, that is, the dynamic patterns generated by
these models were not consistent with the historical teen
driving data patterns.

Model description
Model structure
Figure 2 presents the system structure diagram resulting
from our work to conceptualize teen risky driving im-
provement curve. The building blocks of any system dy-
namics model are feedback loops. A feedback loop is a
chain of variables interacting with each other in such a
way they form a closed path of cause and effect relation-
ships. Variables that are part of loops are called en-
dogenous variables whereas variables that are not part
loops are called exogenous or external variables. The
values of endogenous variables are calculated with every
time-step of the system dynamics model and therefore
they change in time. Endogenous variables which accu-
mulate over time are referred to as stocks and are repre-
sented by rectangles in system dynamics diagrams.
Stocks are also known as state variables and represent
the state of the system at each time point. “Cumulative
miles driven” and “recent events” are the stock variables
in the Teen Driver System Model. Endogenous variables
governing the levels of stock variables are referred to as
flows and depicted as a double arrow representing the
direction of the flow and a valve symbol representing the
fact that the flow quantity is being regulated. Flows
which increase the value of a stock are called inflows,
whereas those which decrease it are called outflows.

Cumulative
miles drivenmonthly driving

Recent events

events per mile

initial event rate fraction of events
perceived as risky

old events

driving need

effect of recent events on
monthly driving=B3

events per month

event decay time

effect of cumulative miles
driven on events per

mile=B1

effect of recent events
on events per mile=B2

new events

Fig. 2 Teen Driver System Model. The single arrows (in blue) represent causal relationships. The rectangles (or boxes) represent stocks (which
accumulate flows over time). The double arrows with a valve symbol represent flows. A double arrow going in a stock is called an inflow and a
double arrow going out of a stock is called an outflow. Inflows increase the value of a stock whereas outflows decrease the value of a stock
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Monthly driving is an inflow as it causes “Cumulative
miles driven” to increase. The variable “new events” is
an inflow as it causes “recent events” to increase whereas
the variable “old events” is an outflow as it causes “re-
cent events” to decrease.
Exogenous variables can have a predefined pattern or

a constant value. If external variables have a constant
value, they are referred to as constants or parameters.
Driving need, initial event rate, fraction of events per-
ceived as risky, event decay time, effect of recent events
on monthly driving, effect of recent events on events per
mile, and effect of cumulative miles driven on events per
mile are model constants. The inflow of “monthly driv-
ing” is regulated by the stock variable “recent events”,
which has a negative feedback on monthly driving. Driv-
ing need is the amount of driving when the value of re-
cent events is equal to zero. The inflow of “new events”
depends on the variable “events per month” and the
fraction of events perceived as risky. The outflow of “old
events” depends on “recent events” and event decay
time. The variable “event decay time” is a conceptual
factor and is defined as the average time for an event to
become old. The variable “events per mile” is calculated
based on the stocks “cumulative miles driven” and “re-
cent events”, and both have a negative effect on events
per mile. The variable “initial event rate” is events per
mile (the baseline event rate or initial risk) when both
recent events and cumulative miles driven are equal to
zero. Initial event rate may be a function of fixed vari-
ables such as age, gender, and maturity level. For ex-
ample, a study conducted by Chapman and colleagues
on trends in crash rates across different age groups
showed that the higher the age, the lower the baseline
crash rates (Chapman et al., 2014). The variable “fraction
of events perceived as risky” represents the proportion
of events perceived by the teen as risky. We assumed
that only collisions are perceived as risky and they repre-
sented on average 7% of all teen driving events. We fur-
ther assumed that environmental factors (e.g., road and
weather conditions) are exogenous variables in the
model.
The model was built in Vensim, which is a simulation

software program used for developing and analyzing sys-
tem dynamic models (http://vensim.com/vensim-soft-
ware/).

Calibration of model parameters
We denoted the effect of cumulative miles driven on
event per mile as β1; the effect of recent events on event
per mile as β2; and effect of recent events on monthly
driving as β3. These assumptions produced the set of or-
dinary differential equations for an individual i.
The differential equation of the stock “recent events”

is as follows:

drecent events

dt
¼ new events−

recent events

event decay time

Since the measurements are frequent in comparison
with the delays involved in the balancing feedback loops,
the equation can be converted to a difference equation:

Δrecent events
Δt

¼ new eventst−1−
recent eventst−1
event decay time

Recent events(t) = Recent events(t-1) + dt(new event-
s(t)-old events(t)).
The differential equation of the stock “cumulative

miles driven” is as follows:

dcumulative miles driven

dt
¼ monthly driving

The equation can be converted to a difference
equation:

Δcumulative miles driven
Δt

¼ monthly drivingt−1

Cumulative miles driven(t) = cumulative miles dri-
ven(t-1) + dt(monthly driving(t)).
Event per mile at time t is determined as:

Event per mile tð Þ ¼ expðβ0þ β1�cumulative miles driven tð Þ
þβ2�recent events tð ÞÞ

Event per mile tð Þ ¼ exp β0ð Þ � expðβ1�cumulative miles driven tð Þ
þβ2�recent events tð ÞÞ

Event per mile tð Þ ¼ initial event rate� expðβ1�cumulative miles driven

tð Þ þ β2�recent events tð ÞÞ where exp β0ð Þ
¼ initial event rate

Monthly driving at time t can be expressed as:

Monthly driving tð Þ ¼ β0þ β3�recent events tð Þ
Monthly driving tð Þ ¼ driving needþ β3�recent events

tð Þ where β0 ¼ driving need:

Model parameters were estimated using calibration,
which involves finding values of unknown parameters to
best match historical data. We performed the model val-
idation on both the aggregate historical data and individ-
ual level historical data. We set some parameters as
fixed effects (parameters with the same value across all
teens) because we thought these parameters should not
be very different across subjects. These parameters were
event decay time, effect of recent events on monthly
driving, effect of recent events on events per mile, and
effect of cumulative miles driven on events per mile. An
internal optimization engine of the simulation software,
which utilizes a modified Powell gradient search method,
was used to find the parameters that minimized mean
squared error. To ensure convergence for this nonlinear
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optimization, we conducted 648,265 independent
searches from random points on the parameters pace. In
this paper, we report both the actual and predicted data
for the calibration of the aggregate data. Actual and pre-
dicted data at driver level are provided in Add-
itional file 1. The predicted data integrates historical
data and predicts into the future. The model fit provides
a measure of the model quality for the mechanisms op-
erating in the system.
Theil inequality statistics provide the summary statis-

tics for historical fit (Sterman, 1984) and are a standard
validity test for system dynamics models. The Theil sta-
tistics decompose model-data variance into three terms:
difference in means Um, difference in variance Us, and
difference in covariance Uc. Um is the fraction of Mean
Squared Error (MSE) due to difference in means (frac-
tion of the MSE due to bias). A large Um indicates sys-
tematic bias, reflecting a difference between the model
and reality. Us is the fraction of Mean Squared Error
(MSE) due to difference in variance. Uc is the fraction of
Mean Squared Error (MSE) due to point-to-point covari-
ance. These summary statistics (Um, Us, and Uc) sum to
1. Other performance metrics are the total Root Mean
Squared Error (RMSE) between model and data, and the
Mean Absolute Percentage Error (MAPE), which is the
sum of ABS((data-model)/data) multiplied by 100.

Results
Historical data trends
Table 1 shows means of events, miles driven, and event
rate over time. There was an increase in the means of
events and event rate over the first two months, after
which there was a decline. The monthly miles traveled
appeared to be increasing over time. Figure 3 shows the
mean event rate profiles for the study population and
for males and females. For both males and females, there
is a peak in event rate during the second month followed
by a slow decline.

Model fit
We tested the model using two different levels of data.
First, we tested the model using the aggregate data (aver-
age events and average amount of driving). To save

space, we reported the calibration results of this first val-
idation test (Fig. 4). Second, we tested the model against
47 individual data series. We have provided the graphs
of the 47 teens in Additional file 1. The overall behavior
(both for the aggregate data trends and individual level
data trends) appears to fit the empirical trends. The esti-
mated parameters from the model are listed in Table 2.
Theses parameters were optimized using data of the 47
teen drivers. As hypothesized, the model calibration
shows that cumulative miles driven has a negative effect
on event per mile, and recent events have a negative ef-
fect on both event per mile and monthly amount of
driving. This confirms the negative feedback exerted by
past events on future events and amount of driving. In-
dividualized trends in monthly driving events were influ-
enced by initial event rate (initial risk) and driving need.
We observed significant variations in the model fit

across different teen drivers. Thus, there were some in-
dividual differences in teen driving behavior that can be
taken into account by adding an individualized input as
an exogenous variable to capture these individual differ-
ences that were not observable, such as daily routines,
parent imposed driving restrictions, mechanical auto
problems.

Model performance metrics
The model performance metrics are shown in Table
3. For the variable “events/month”, the inspection of the
fit statistics suggests that only 6% of the mean squared
error are due to systematic bias, but the majority of the
error is due to differences in variance (56%) and covari-
ance (37%) between data and simulations. The largest
fraction of error attributable to unequal variances could
potentially be explained by individual differences not
captured by the model. The error decomposition for the
variable “driving/month” shows that only 5% of the
mean squared error is due to systematic bias but the lar-
gest fraction of error comes from covariance (63%) and
variance (32%). The fact that the error is driven by un-
equal covariation indicates that simulated monthly driv-
ing tracks the underlying trend in the actual monthly
driving almost perfectly, but diverges point-by-point.
This divergence may be due to noise in the historical
data not captured by the model.

Discussion
We found that teen risky driving improvement process is
created endogenously by several feedback mechanisms.
The analysis suggests the existence of one reinforcing
loop and three negative feedbacks in the model. The re-
inforcing loop arises from a decline in recent events
leading to a faster increase in monthly amount of driv-
ing. The increase in monthly amount of driving leads to
a faster buildup of miles driven and thus a greater

Table 1 Distribution of events, miles driven, events per mile
over time

Month Events
Mean (SE)

Miles driven
Mean (SE)

Events per mile
Mean (SE)

1 18.91 (37.50) 548.85 (242.87) 0.03 (0.05)

2 26.57 (49.68) 580.85 (287.32) 0.05 (0.09)

3 21.11 (34.89) 581.64 (303.39) 0.04 (0.07)

4 18.17 (33.07) 559.53 (303.73) 0.03 (0.06)

5 19.63 (36.25) 629.60 (316.11) 0.03 (0.07)
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decrease in driving event rate. The decrease in driving
event rate leads to a further decline in recent events via
a slow replenishing of the stock “recent events.” The first
negative feedback is between recent events and a result-
ant decline in the amount of driving. Factors such as fear
of driving or imposed restrictions on access to the car
could be the mechanisms for this negative feedback, al-
though these variables were not measured and therefore
could not be included in the model. The decline in
amount of driving would slow down accumulation of
driving experience. Reflecting on the behavior of recent
events, we would expect that the amount of monthly
driving will eventually begin to stabilize as recent events

begin to approach zero. By this negative feedback mech-
anism, more recent events lead to less driving; and less
recent events result in more driving. The second nega-
tive feedback in the model is a greater number of recent
events leading to a greater decrease in event rate, per-
haps via corrective actions taken by the teen driver.
Thus, more recent events in stock lead to a decrease in
event rate, but slow accumulation of amount of driving
via less driving. The third negative feedback is controlled
by outflow (old events) from the stock of recent events
and this outflow is regulated by event decay time. Taken
together, the results suggest that variations of individual-
ized trends in driving outcomes are more likely due to

Fig. 3 Mean event rate profiles for the study population and for males and females. The blue curve represents the trend in mean event rate
(events/mile) for the study population. The red curve represents the trend in mean event rate (events/mile) for females. The green curve
represents the trend in mean event rate (events/mile) for males

Fig. 4 Sample historic trends in driving data and calibrated model simulations. The red curve represents the actual (mean) driving data of the
study population and the blue curve represents the predicted driving data
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significant variations in the stock of “cumulative miles
driven”, the stock of “recent events”, and the initial risk
(initial event rate).
Consistent with other studies, we found that driving

events peak during the second month after licensure ra-
ther than the first month (Lewis-Evans, 2010; Chapman
et al., 2014). Our methodological approach provides an
explanation for this phenomenon, which was not fully
understood, overlooked, or dismissed in favor of hypoth-
eses of increased driving exposure. The results presented
here provide evidence that such observed trends in driv-
ing events have resulted from a simpler set of epidemio-
logical processes. The amount of driving starts moderate
and the initial risk (i.e., initial event rate) starts moder-
ate. This leads to more events, which in turn lead to
more corrective actions taken by the teen to avoid
events (i.e. more caution) but less amount of driv-
ing (perhaps via fear or restrictions on access to the car);
gradual build-up of experience and slow decline in
events; this leads to gradual increase in amount of driv-
ing, faster increase in experience, and so a faster decline
in events, and finally a plateau. That is a S-shaped de-
cline in driving events.
This model could have important policy implications.

The teen driver model presented here is continuously
calculating all the model variables and their interactions
as part of simulated driving performance. Mathematic-
ally, this differential equation model has two important
effects. One is to preserve the continuous nature of vari-
ables affecting risky driving. For example, the variable
“cumulative miles driven” of every teen driver is calcu-
lated continuously as part of a teen’s driving perform-
ance and can be measured at any instant. All the
variables affecting risky driving and their interactions are
calculated in this way. In addition, using differential
equations makes the model completely continuous in
time, allowing any event to occur at any time.

This complex interplay of the timing of driving events
and accrual of driving experience is important because
many teen driving interventions have options for imple-
mentation timing. For example, some interventions may
be most effective if implemented during the learner
period, while some may be more effective if imple-
mented at the start of unsupervised driving. Further-
more, the fact that the model is continuous in time
provides options to explore differential impact based on
timing of implementation, assisting decisions on when
to initiate, modify, or switch off a possible intervention
strategy for a particular teen driver. The model can be
used to evaluate the effectiveness of an intervention at a
particular time. The model can also be asked to repro-
duce or predict the results of real clinical trials. The cali-
brated model presented here offers value as a tool for
examining how trends in teen risky driving might behave
under a variety of intervention scenarios. For example,
the model can be extended to explore the dynamics of
introducing teen driving interventions or policies (e.g.,
driver feedback intervention) and assess intervention
tradeoffs.
This study may have methodological implications as

related to teen driving research. We found that there is
an endogenous process underlying teen risky driving.
Teen risky driving results from complex interrelated
processes such as self-reinforcing and self-correcting
feedback mechanisms. Regression-based approaches
used in public health are ill-equipped to investigate
problems embedded in feedback processes. Despite their
strengths in accounting for potential confounding fac-
tors, a major limitation of traditional public health ana-
lyses, which are usually regression-based, lies within
their inability to account for feedback mechanisms
(Luke and Stamatakis 2012; Galea and Ahern 2006).
Ignoring these phenomena can limit the ability of
statistical models to identify exposure-outcome rela-
tionships. For example, a system-based approach was
in a used in an epidemiologic study to capture rela-
tionships not identified by statistical regression ap-
proaches (Auchincloss and Diez Roux, 2008). Studies
have reported less predictive performance and reliabil-
ity for statistical models in the absence of accounting
for feedback processes (Lyneis, 2000; Liehr et al.,
2001; Srijariya et al., 2008).
Although we have based the model on the best avail-

able information pertaining to teen risky driving, one

Table 2 Parameter values for the dynamic model

Parameters Estimated values and 95% CI

Effect of cumulative miles
on event per mile (β1)

−0.00025 (− 0.00027, − 0.00023)

Effect of recent events on
event per mile (β2)

−0.00800 (− 0.00827, − 0.00758)

Effect of recent events on
monthly driving (β3)

−3.40216 (− 3.59304, − 3.27073)

Event decay time (in month) 6.15949 (5.68868, 6.69635)

Table 3 Summary statistics for historical fit

Variable RMSE Theil_Um Theil_Us Theil_Uc MAPE

Events/month 7.37 (11.21) 0.06 (0.24) 0.56 (0.30) 0.37 (0.28) 64.43 (48.56)

Driving/month 122.67 (80.53) 0.05 (0.07) 0.32 (0.31) 0.63 (0.33) 21.09 (14.22)

RMSE the total Root Mean Squared Error, MAPE mean absolute percentage error
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limitation of is the inability of a video recording system
to perfectly measure driving performance. The in-vehicle
system measures g-force changes, and not all driving er-
rors result in changing g-forces. Additionally, risk-taking
behaviors such as running stop signs and cell phone use,
as well as parent engagement in their teens’ driving,
were not continually measured with this in-vehicle sys-
tem approach. It is possible that these variables are a
part of the endogenous process, or they may be exogen-
ous variables in the model. Despite these uncertainties,
the model presented here did match real data, building
confidence that the model is “realistic”, even if there are
gaps in the current understanding of the dynamics of
teen risky driving. As teen risk-taking behaviors and par-
ent engagement become better understood, they can be
correctly specified into the model. A very important fea-
ture of the model as formulated is that it is easy to ex-
pand and update.
Another limitation with the model pertains to selec-

tion bias. The model was calibrated using data from a
clinical trial, and clinical trials are subject to both ran-
dom and systematic bias. The main source of systematic
bias in this study is selection bias, as participants were
volunteers and were not a random sample of the teen
driver population. This could be a source of uncertainty
in the model parameters.
Another potential limitation of this study is the sample

size, which was small, and the relatively short follow-up
period. However, our main goal was to make explicit our
hypothesis about the dynamics of teen driving behavior,
hoping to inspire further discussion and much needed
research to further clarify certain relationships.
Throughout this investigation, the limited data contrib-
uted to adding confidence to the model assumptions
and structure. This is an early work, and we hope to re-
fine the model based on critique and suggestions made
by the scientific community. After refinement, the model
would need to be recalibrated on a much larger study
over a longer follow-up period.
It is our hope that the dynamic model presented here

will spark further discussion and research on teen driving.
We present conclusions from this early work in the hope
that some suggestions will resonate with teen driving re-
searchers. While the systems approach used in this study
may aid in systematically thinking through innovative teen
driving interventions, we believe that our explicit dynamic
hypotheses raise opportunities for community reflection,
critique, and refinement. The model will be made widely
available over the website of the University of Iowa Injury
Prevention Research Center, through a very user-friendly
interface for free. This will enable the scientific commu-
nity to interact with the model, view the assumptions and
equations, explore how the model functions, and share
their comments.

Conclusions
Teen risky driving follows a course of a slow improve-
ment, then a faster improvement, and finally a plateau:
that is, an S-shaped decline in driving events. This im-
provement process is created endogenously by several
feedback mechanisms. The model proposed in the
present article to reflect this improvement process can
spark discussion, which may result in improved insight.
The model may help policymakers design appropriate
interventions and evaluate their impacts.

Additional file

Additional file 1: Fit of the presented model across 47 teen drivers as
well as other model structures examined. (DOCX 764 kb)
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