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Abstract

Background: The goal of predictive modelling is to identify the likelihood of future events, such as the predictive
modelling used in climate science to forecast weather patterns and significant weather occurrences. In public
health, increasingly sophisticated predictive models are used to predict health events in patients and to screen high
risk individuals, such as for cardiovascular disease and breast cancer. Although causal modelling is frequently used
in epidemiology to identify risk factors, predictive modelling provides highly useful information for individual risk
prediction and for informing courses of treatment. Such predictive knowledge is often of great utility to physicians,
counsellors, health education specialists, policymakers or other professionals, who may then advice course correction
or interventions to prevent adverse health outcomes from occurring. In this manuscript, we use an example dataset
that documents farm vehicle crashes and conventional statistical methods to forecast the risk of an injury or death in a
farm vehicle crash for a specific individual or a scenario.

Results: Using data from 7094 farm crashes that occurred between 2005 and 2010 in nine mid-western states, we
demonstrate and discuss predictive model fitting approaches, model validation techniques using external datasets, and
the calculation and interpretation of predicted probabilities. We then developed two automated risk prediction tools
using readily available software packages. We discuss best practices and common limitations associated with predictive
models built from observational datasets.

Conclusions: Predictive analysis offers tools that could aid the decision making of policymakers, physicians, and
environmental health practitioners to improve public health.
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Introduction
Predictive models or algorithms are routinely utilized to
predict many everyday events or decisions. The list of
such outcomes include daily or inclement weather events
(Saha et al. 2014); department store purchases that com-
panies use to provide coupons at grocery stores (Wu and
Bryniolfsson 2013; Schoen et al. 2013); or targeted adver-
tisement and news stories that we receive on Facebook,

Yahoo, travel websites, or elsewhere. The information
needed for such prediction may, for example, come from
an individual’s browsing history or grocery shopping
habits. Many variables are needed to predict a future event
with good accuracy, with an implicit assumption that the
predicted event has consistent explanatory factors. For
example, to predict tomorrow’s weather in a given city, we
will need information on today’s weather in that city,
today’s weather in all places surrounding that city, the
wind speed, and the season and annual averages based on
past weather trends. In the current highly digitized world
with Big Data, large sets of variables with sophisticated
predictive algorithms may allow forecasting a future event
with increasing fidelity.
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In healthcare settings, medical tests, (e.g., blood pres-
sure or cholesterol measurements) are one form of
predictive data that allow physicians to assess the pro-
bability that the patient may (or may not) have an
adverse event in the (near or distant) future. We have
utilized many such medical tests to predict good or bad
health outcomes, for example, to predict breast cancer
(Gail et al. 2007; Quante et al. 2012) and 5-year or
10-year risks of cardiovascular diseases (Keys et al. 1972;
Kleinbaum et al. 1971; Wilson et al. 1998). The latter
work (Keys et al. 1972; Kleinbaum et al. 1971; Wilson et
al. 1998) led to the development of a web-based tool to
forecast the 10-year risk of cardiovascular disease, pre-
dicted by age, sex, smoking status, blood pressure (in-
cluding medications), and cholesterol levels (AHA
2017). Similarly, predictive algorithms are also now
being used to estimate the probability that an individual
may suffer from an opioid overdose in a defined future
period (Glanz et al. 2018). Such predictive algorithms
are helpful for a physician, counselor, health education
specialist, social worker, police or parole officer, policy
maker or other professionals to identify individuals at an
increased risk of having certain adverse outcome within
a given timeframe. Predictive models can also be used to
help educate target populations so that individuals can
understand their personal risks given their unique set of
demographics, behavioral characteristics or environmen-
tal / social conditions.
Notably, predictive models serve a different purpose

than causal (or associational) models and their resultant
measures like relative (ratio) measures of risks, rates,
odds or hazards. In multivariable modeling, causal or
associational measures (risk ratios, rate ratios, odds
ratios or hazard ratios) examine the partial relationship
(or association) between a single independent variable
with a health outcome (dependent variable) on a ‘popu-
lation level.’ Causal measures tell us for example the
effectiveness of population level interventions in impro-
ving public health or the population level impact of harm-
ful exposures and their resulting public health burden.
Thus, causal models help in population-level decision
making, especially in formulating policy or even treatment
decisions that affect large populations (e.g., firearm safety
laws, laws mandating use of prescription monitoring pro-
grams or standardized treatment regimens for treating
cancers or HIV-AIDS). However, causal measures do not
quantify the risk of the adverse event for a particular indi-
vidual with a particular set of variable values. Predictive
models offer a complementary means to aid decision
making at the individual or situational level, which causal
(or associational) models are unable to address. For
example, while comparing a sample of individuals who
were exposed to a certain condition to another sample of
individuals who were not exposed to that condition, we

may discover that the risk of a hypothetical adverse event
may be twice as high among the exposed than the un-
exposed, i.e., a risk ratio of 2. While on a population or
sample level this may hold true, the risk of actually ex-
periencing the adverse event for each individual in the
exposed and unexposed subsets differ. Indeed, some indi-
viduals in the exposed subset will never experience the ad-
verse event, and some individuals will experience the
adverse event even when they were not exposed. A pre-
dictive algorithm allows us to identify or measure
subject-specific probabilities of experiencing an adverse
events, thereby aiding decision making at an individual or
situational level.
Predictive models can be developed using the same

traditional regression analyses methods used for causal
modelling (e.g. linear, log binomial, logistic, Poisson, Cox
regression). In this manuscript, we illustrate the de-
velopment of a simplistic predictive algorithm for an
injury-related outcome that incorporates our prior under-
standing of the substantive area and utilizes a large
database to predict the probability of an adverse event.
Predictive models have widespread applicability in the

area of injury and violence prevention, especially as the
field continues to develop and implement interventions
that target individual behaviors. For example, a physician
could use predictive tools based on a patient’s diagnosis,
mental and physical health history and previous medi-
cation prescriptions to titrate the supply of opioid pain
medication for that patient so that the pain is adequately
controlled while also reducing the risk of an opioid use
disorder. Using similar patient-history driven predictive
tools, a mental health counselor could advise reduced
access to a firearm for someone at high risk of commit-
ting suicide. A particular focus of our research is motor
vehicle crashes, a leading cause of death in rural agricul-
tural communities. Predictive models can aid prevention
efforts that target individual protective behaviors while
driving or operating agricultural equipment on road-
ways. Examples of protective behaviors include use of
seat belts, installation of rollover protective devices in
tractors and safe driving behaviors (following traffic
regulations).
We used farm vehicle equipment involved motor

vehicle crash (henceforth, farm crash) data from nine
Midwestern states in the United States from 2005 to
2010 to build models for forecasting the risk of injury or
death in a farm crash. For this case example, we employ
the logistic regression framework, as this regression
technique best addresses the nature of the data. How-
ever, the methods described herein can be easily repli-
cated in other datasets where outcome distributions
favor the use of alternative modeling frameworks.
We demonstrate model building approaches for pre-

dictive models using prior knowledge of the substantive
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area. We further demonstrate model fitting approaches,
model validation techniques using external datasets, and
the calculation and interpretation of predicted proba-
bilities. Additionally, we share two risk prediction tools
that can be used by lay and scientific audiences to
predict their own or hypothetical risks of being injured
should they be involved in a farm crash. Lastly, we dis-
cuss best practices and common limitations associated
with predictive models.

Methods
Example data
Transportation is the leading cause of agricultural-re-
lated death, and crashes with farm equipment on road-
ways present a burden for all roadway users (BLS 2013a,
b). Predictive algorithms in transportation research
could allow us to identify high crash risk scenarios and
provide opportunities to intervene. We used secondary
crash data from 2005 to 2010 to assess the risk of injury
or death in farm vehicle-related crashes (referred hereon
after as crash/ farm crash, unless otherwise mentioned),
given crash-level, vehicle-level, and individual-level
factors. The data were collected from the departments
of transportation (DOT) of Illinois (IL), Iowa (IA),
Kansas (KS), Minnesota (MN), Missouri (MO), Nebraska
(NE), North Dakota (ND), South Dakota (SD), and
Wisconsin (WI). The data include all police-reported
crashes, including death, injury, or property damage of
at least $500 to $1500, depending on the state. Methods
to identify and code farm vehicle crashes from these
data have been discussed previously (Harland et al. 2014;
Ranapurwala et al. 2016). Multilevel crash data include
the characteristics of crashes, involved vehicles, and their
occupants. The crash characteristic variables were year,
month, and date of the crash, day of the week, time of
the day, the state in which crash occurred, season, num-
ber of fatalities, number of injured occupants, number of
vehicles involved in the crash, manner of collision, ambient
lighting at the time of crash, and weather conditions. The
vehicle characteristics included vehicle type, vehicle action
at the time of the crash, number of occupants, and driver
contributing circumstances. The person-level characteris-
tics included age, sex, injury status (no injury or fatal and
non-fatal injury), occupant protection information, occu-
pant seating, and driver or passenger status.
Injury severity, coded by the reporting law enforcement

officer, was available at the individual-level, defined as no
injury, possible injury, non-incapacitating injury, incapaci-
tating injury, or fatality. We developed a new binary injury
variable for each individual, such that ‘any injury’ cor-
responds to non-incapacitating, incapacitating, or fatal
injury; and ‘no injury’ corresponds to no or possible injury.
Discrete covariate categories were collapsed into broader

but meaningful categories based on a-priori knowledge

(Hughes and Rodgman 2000; Peek-Asa et al. 2007; Pinzke
and Lundqvist 2004; Costello et al. 2003; Gerberich et al.
1996; Jaarsma and De Vries 2014; Marlenga et al. 2006;
Gkritza et al. 2010; Maio et al. 1992; Stephan and Newstead
2014; Russo et al. 2014). Vehicle type was classified as farm
vehicle or non-farm vehicle. Number of vehicle occupants
was categorized as single or multiple occupant. The
crash type was defined as either a single vehicle crash
(farm vehicle only), or a multiple vehicle crash (two
or more vehicles, one of them being a farm vehicle).

Statistical analysis
Predictive models were fit using multivariable logistic
regression for individual-level data. To accommodate
clustering at the crash level, generalized estimating
equations (GEEs) with an exchangeable working corre-
lation structure were employed to fit the models. Three
types of models were formulated. First, we added a set
of non-modifiable variables, which cannot be practically
intervened on, to determine changes in injury probabil-
ity given the non-modifiable factors (model 1). The
non-modifiable variables included state, season, weather,
time-of-crash, number of involved vehicles, equipment
type, and age and sex of the occupant. Next, we added
semi-modifiable factors that can be indirectly intervened
upon or are consequences of the modifiable factors
(model 2). These included ambient light, manner of
collision, vehicle action, number of occupants in the
vehicle, and the occupant type. Lastly, we added modi-
fiable factors, which may be directly intervened on, to
the model (model 3). These included driver contributing
circumstances and occupant protection. Non-modifiable,
semi-modifiable, and modifiable factors were classified
a-priori based on previous literature (Hughes and
Rodgman 2000; Peek-Asa et al. 2007; Pinzke and
Lundqvist 2004; Costello et al. 2003; Gerberich et al. 1996;
Jaarsma and De Vries 2014; Marlenga et al. 2006; Gkritza
et al. 2010; Maio et al. 1992; Stephan and Newstead 2014;
Russo et al. 2014), expert knowledge, and consensus
among the research team members.
We did not include variables that were highly collinear

with other variables that better explained the outcomes.
Seating was highly correlated with the driver status
(driver/ passenger), and month was highly correlated
with season; consequently, these two variables were
removed from the predictive model. Day of the week
was removed because it did not predict injury. Occupant
age in 10-year age categories provided better penalized
model fit than continuous or log-transformed age.
Multiple imputation (five imputed datasets), using the
fully conditional specification methods for logistic re-
gression, was performed to impute missing values for
vehicular action (5.9%), driver circumstances (14.8%), and
occupant protection (21.4%) with no interactions. All
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models were fit to each of the five imputed datasets. The
resulting regression coefficients from the imputed datasets
were then pooled to obtain the final coefficients that are
reported here.

Internal validation
Model fit was assessed in three ways. First, by using the
quasi-likelihood information criterion (QIC), a variant of
AIC designed for models fit using GEEs (Pan 2001).
Smaller values of QIC (or AIC or BIC) correspond to
models that provide better penalized fit (Akaike 1973;
Schwarz 1978). Second, by calculating the concordance
statistic (or c-statistic), which estimates the area under
the receiver operating characteristic curve (AUC). The
c-statistic ranges from 0.50 to 1, with higher values cor-
responding to models that provide better discrimination
between outcome occurrence and non-occurrence (Gail
et al. 2007; Quante et al. 2012). Lastly, model fit was
assessed by estimating an expected outcome count using
the model coefficients in the same dataset from which
the coefficients were obtained (Keys et al. 1972). A
chi-squared statistic was calculated to compare the
expected and observed outcome count to assess statis-
tical difference between the two. Note that all three of
these methods are of limited utility because they only
evaluate the fitted model based on the same dataset used
in the model construction (i.e., the “training data”), and
do not examine if the predictive models could accurately
predict outcomes in new data (i.e., in “validation data”).
Hence validation of the predictive model in external data
is also needed.

External validation
We partitioned 2005–2010 data in three ways to obtain
a training dataset and a validation dataset: 1) 2005–2007
data were separated as training data and 2008–2010 as
validation data, 2) 2005–2008 data were separated as
training data and 2009–2010 as validation data, and 3)
2005–2009 data were separated as training data and
2010 as validation data. We fit models 1–3 using each of
the three training datasets and applied the estimated
model coefficients to obtain expected outcome counts in
the corresponding validation datasets. This allowed us to
compare the observed injury/death counts from the
validation dataset to the expected injury/death counts
from the same validation dataset using predictions based
on models 1–3 from the training datasets.

Predicted probabilities
Predicted probabilities for different regression models
can be readily obtained from standard statistical analyses
programs such as SAS, STATA, R, etc. For this example,
based on the estimated model coefficients from the final
fitted logistic regression model (model 3), we constructed

some crash scenarios as examples to demonstrate the
calculation and interpretation of predicted probability of
injury. In our application, the predicted probability (or
risk) of injury or death in a farm crash scenario was calcu-
lated for each occupant involved in the crash as:

P Injury or Deathð Þ ¼ Odds
1þOdds

¼ 1

1þ exp − αþ β1C1 þ β2C2 þ⋯þ βiCi
� �� �� �

Here, P is the predicted probability or risk of injury or
death, C1, C2,… , Ci are the covariates in the logistic
regression model, and β1, β2,… , βi are the regression
coefficients for those covariates (Keys et al. 1972;
Kleinbaum et al. 1971).
All analyses were conducted using SAS 9.4 (SAS

Institute, Cary, NC). Using the model coefficients, we
built two interactive risk prediction tools, one using
Microsoft Excel (Microsoft, Inc), and one using R-Shiny
(RStudio). The study was considered non-human subjects
by the Institutional Review Board at the University of Iowa
due to the de-identified nature of the secondary data.

Results
From 2005 to 2010 there were 7094 farm crashes in the
nine states, of which 86% (n = 6119) were multiple
vehicle crashes and 14% (n = 975) were single vehicle
crashes. Of the 7094 crashes, 10 crashes had missing
injury or fatality information, and were subsequently
excluded from the analyses. A total of 12,936 vehicles
were involved in the 7084 crashes, of which 11,961 ve-
hicles were involved in multiple vehicle farm crashes.
There were 14,834 occupants involved in the 7084
crashes, and of these, 2087 (14.1%) had been injured or
killed in the crash. The distribution of the crashes, injuries
and deaths by state and year are presented in Table 1.
Table 2 presents regression coefficients from three

fitted models: model 1 included non-modifiable factors,
model 2 added the semi-modifiable factors, and model 3
included two additional modifiable factors. Comparing
the QICs and c-statistics (estimated AUCs) from the
three nested models (models 1, 2 and 3), we see that
model 3 was the best fitting and was hence selected as
the final model.
The comparisons of state-by-state expected injuries/

deaths to the observed injury/ deaths from also implies
that model 3 best characterized the observed data as
compared to models 1 and 2 (Table 3), thereby suggesting
that model 3 best estimated the overall number of injuries
and deaths.
The observed and expected counts for the validation

data were most similar for models 2 and 3 (Table 4).
This comparison revealed that our predictive models
could accurately predict the number injuries or deaths
in future farm crash data from the same nine US
states.
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Examining model fit as shown in Table 3, and validation
in an external dataset (external to the training dataset) as
shown in Table 4, are important pieces in addressing
potential underfitting or overfitting of the predictive
models. With an underfitted predictive model, within the
training data, the expected model outcome counts will
not accurately represent the observed counts due to bias.
This may happen due to consideration of a limited num-
ber of predictors, or due to collapsing variables with mul-
tiple discrete categories into a few large categories that
may not represent the finer categories. An adequate model
fit will exhibit a close correspondence between the
expected and observed counts for the training data
(Table 3). On the other hand, one can include too
many predictors (and interactions of those predictors) to
achieve a nearly exact model fit, so that the expected
model outcome counts from the training data nearly
replicate the observed outcomes from the training data.
When applied to external validation datasets, such overly
complex models may not be able to accurately estimate
the new observed outcome counts. These types of pre-
dictive models are referred to as overfitted or non-
generalizable. In this example, the models accurately
approximate the observed counts for both the training
dataset (Table 3) and the validation dataset (Table 4). The
propriety of the model fits is also represented by the AUCs.

Using predicted probabilities based on model 3, we con-
structed a hypothetical crash scenario to estimate the
probability of injury or death for the involved individuals
with specific demographic and driving characteristic
profiles. We consider the following non-modifiable
characteristics for the scenario: male driver of a farm
vehicle in Iowa, aged 25–34 years, was involved in a single
vehicle farm crash on a clear morning (6:00–11:59 am) dur-
ing the growing season (June–August). Semi-modifiable
characteristics: the manner of collision set to non-collision,
the vehicle action set to heading straight, and the presence
of a male passenger. Modifiable characteristics: Driver
contributing circumstances set to none and occupant
protection set to all occupants wearing seatbelts
(Table 5). In this scenario, the risk of injury or death
for the farm vehicle driver would be 16.7% and that for
a male passenger would be 17.8%. If, however, the
driver and passenger were not wearing seatbelts, and
the driver disregarded the traffic regulations, their
respective risks of injury or death would be 48.5% and
50.4% (Table 5). Suppose this scenario was altered to be
a multivehicle crash in which the farm vehicle (with the
same male driver and male passenger) was rear-ended
by a non-farm vehicle (with a male driver and a male
passenger). If all the individuals were wearing seat belts,
and both the drivers were following traffic regulations,
then the risk of injury or death in the crash would be
7.3% for the farm vehicle driver, 7.8% for the farm
vehicle passenger, 28.7% for the non-farm vehicle driver,
and 30.3% for the non-farm vehicle passenger. If these
individuals were not wearing seatbelts and the drivers did
not follow traffic regulations, then their respective risks
would be 26.9, 28.4, 65.3, and 67% (Table 5).
These risks can be easily estimated by deploying inter-

active tools that utilize model coefficients from the final
fitted model. We developed a Microsoft Excel-based tool
using the model 3 coefficients from 2005 to 2010 data that
can be downloaded at https://drive.google.com/drive/
folders/0B0B0TgPTSgJ8bjVZYjdGaF96UzQ. We also de-
veloped a similar internet-based tool using R-Shiny (Fig. 1);
the online tool can be found at https://gpcah-farmcrash-
predictive.shinyapps.io/predictiveapp/. These two tools are
freely available and can be used by anyone to estimate an
individual’s risk of injury in a farm crash. The risk
estimates in Table 5 were produced using these tools.

Discussion
In this manuscript, we demonstrate how the regression
coefficients obtained from predictive analyses can be
used to forecast the risk of a health outcome for indivi-
duals in specific farm crash scenarios. The predictive
models allow us to compare the risks in different sce-
narios, helping us to appreciate the change in risk with
varying circumstances as shown in Table 5. Specifically,

Table 1 Distribution of farm vehicle crashes and resulting
injuries and deaths by calendar year and state: 2005–2010

Farm vehicle
crashes
N (%)

Injuries and deaths

N (rate per 100
crashes)

Deaths

N (rate per 100
crashes)

Total 7084 2087 (29.5) 163 (2.3)

Calendar Year

2005 1166 (16.5) 338 (29.0) 21 (1.8)

2006 1114 (15.7) 318 (28.5) 29 (2.6)

2007 1198 (16.9) 336 (28.0) 26 (2.2)

2008 1160 (16.4) 316 (27.2) 22 (1.9)

2009 1196 (16.9) 407 (34.0) 37 (3.1)

2010 1250 (17.6) 372 (29.8) 28 (2.2)

State

Iowa 1178 (16.6) 421 (35.7) 35 (3.0)

Illinois 1214 (17.1) 421 (34.7) 27 (2.2)

Kansas 700 (9.9) 186 (26.6) 19 (2.7)

Minnesota 850 (12.0) 199 (23.4) 22 (2.6)

Missouri 1084 (15.3) 207 (19.1) 12 (1.1)

North Dakota 253 (3.6) 51 (20.2) 12 (4.7)

Nebraska 536 (7.6) 189 (35.3) 10 (1.9)

South Dakota 232 (3.3) 74 (31.9) 8 (3.4)

Wisconsin 1037 (14.6) 339 (32.7) 18 (1.7)
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Table 2 Injury / death status, and estimated regression coefficients for non-modifiable, non + semi-modifiable, and non + semi
+modifiable risk factors to predict the risk of injury or death in a farm crash: 2005–2010

Variables Categories Injured
or died

Model coefficients (std. error)

Yes No Model 1a Model 2b Model 3c

Intercept Intercept (constant) 2087 12,747 −1.75 (0.18) −1.73 (0.24) −0.97 (0.25)

Non-modifiable factors

State Iowa 421 1858 0.39 (0.10) 0.46 (0.10) 0.42 (0.10)

Illinois 421 2230 0.19 (0.10) 0.20 (0.11) 0.33 (0.11)

Kansas 186 1291 −0.19 (0.12) −0.21 (0.12) − 0.26 (0.13)

Minnesota 199 1688 −0.30 (0.11) −0.24 (0.12) − 0.08 (0.12)

Missouri 207 1686 −0.09 (0.11) −0.21 (0.12) − 0.34 (0.12)

North Dakota 51 431 −0.43 (0.21) −0.50 (0.21) − 0.56 (0.21)

Nebraska 189 970 0.16 (0.12) 0.11 (0.12) 0.08 (0.12)

South Dakota 74 379 0.16 (0.17) 0.14 (0.18) −0.06 (0.19)

Wisconsin (referent) 339 2214 0 0 0

Season Winter (Jan-Mar) (referent) 192 1510 0 0 0

Planting (Apr-May) 341 2307 0.06 (0.12) 0.20 (0.12) 0.17 (0.12)

Growing (Jun-Aug) 635 3492 0.30 (0.11) 0.42 (0.11) 0.38 (0.11)

Harvesting (Sep-Dec) 919 5438 0.19 (0.10) 0.16 (0.10) 0.15 (0.10)

Weather at the time of crash Clear (referent) 1618 9802 0 0 0

Cloudy 329 2081 −0.01 (0.08) − 0.09 (0.08) − 0.11 (0.08)

Rain 78 376 0.17 (0.15) −0.03 (0.16) 0.03 (0.16)

Snow/sleet/hail/freezing rain/drizzle 22 289 −0.74 (0.28) −0.89 (0.28) − 0.87 (0.28)

Fog/smog/smoke/other 40 199 0.15 (0.22) 0.01 (0.22) −0.08 (0.23)

Time of crash 12:00–5:59 am (referent) 131 739 0 0 0

6:00–11:59 am 501 3478 −0.11 (0.13) 0.13 (0.14) 0.17 (0.14)

12:00–5:59 pm 885 6218 −0.14 (0.13) 0.08 (0.13) 0.08 (0.14)

6:00–11:59 pm 570 2312 0.41 (0.14) 0.12 (0.14) 0.11 (0.14)

Number of vehicles Single vehicle 238 827 1.37 (0.10) 1.22 (0.13) 1.22 (0.14)

Two or more vehicles (referent) 1849 11,920 0 0 0

Equipment type Farm vehicle/equipment 672 6875 −1.14 (0.06) −1.02 (0.06) −1.63 (0.08)

Non-farm vehicle (referent) 1415 5872 0 0 0

Age < 16 years age 159 799 0.24 (0.11) 0.04 (0.13) 0.13 (0.14)

16–24 years age 388 2120 0.24 (0.09) 0.21 (0.09) 0.22 (0.10)

25–34 years age (referent) 234 1839 0 0 0

35–44 years age 288 1851 0.15 (0.10) 0.15 (0.10) 0.20 (0.10)

45–54 years age 325 2326 0.11 (0.09) 0.10 (0.10) 0.13 (0.10)

55–64 years age 278 1794 0.22 (0.10) 0.24 (0.10) 0.30 (0.10)

65+ years age 415 2018 0.49 (0.09) 0.51 (0.09) 0.59 (0.10)

Sex Female (referent) 626 2663 0 0 0

Male 1461 10,084 −0.19 (0.06) −0.14 (0.06) −0.26 (0.06)

Semi-modifiable factors

Light Daylight (referent) 1407 10,195 0 0

Dark-street lights on 27 223 −0.20 (0.25) −0.27 (0.26)

Dark-no street lights 553 1882 0.57 (0.10) 0.59 (0.10)

Other 100 447 0.50 (0.14) 0.42 (0.15)
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the change in modifiable and semi-modifiable factors may
allow us to understand the impact of intervening on these
factors on the individual’s risk of injury or death.
In predictive analyses, the estimated model coefficients

may be used to suggest that a certain variable is a strong
or weak predictor of the outcome; however, the coeffi-
cient estimate is not used to characterize the effect of a
variable on the outcome (which is the aim of causal
modeling). This fundamentally differentiates predictive
modeling from causal modeling, with the latter being
ubiquitous in the public health literature. In predictive
modeling, a coefficient affects the probability of the

outcome for every individual differently based on all
other individual or scenario-specific coefficients (Table 5).
Predictive modeling is used to ultimately answer the

questions like “what is the probability (or risk) of an
injury for an individual given a crash and the combi-
nation of all circumstantial factors?” It is noteworthy
that the risks estimates presented in Table 5 do not
entirely depend on driver behavior. They also depend on
the total contribution of risk factors such as driver or
passenger (semi-modifiable factor), farm or non-farm
vehicle (non-modifiable factor), and single vehicle crash or
multivehicle crash (non-modifiable factor). In addition, in

Table 2 Injury / death status, and estimated regression coefficients for non-modifiable, non + semi-modifiable, and non + semi
+modifiable risk factors to predict the risk of injury or death in a farm crash: 2005–2010 (Continued)

Variables Categories Injured
or died

Model coefficients (std. error)

Yes No Model 1a Model 2b Model 3c

Manner of collision Non collision (referent) 294 1301 0 0

Head-on 127 415 0.40 (0.17) 0.40 (0.18)

Rear-end 716 2747 0.28 (0.13) 0.28 (0.13)

Angle, oncoming left turn 361 2343 0.04 (0.14) 0.10 (0.14)

Sideswipe, same direction 192 2698 −0.85 (0.15) −0.73 (0.16)

Sideswipe, opposite direction 152 1462 −0.65 (0.16) −0.55 (0.16)

Other 245 1781 −0.21 (0.14) −0.21 (0.14)

Vehicle action Heading straight (referent) 1510 6934 0 0

Turning 133 2489 −0.55 (0.11) −0.62 (0.11)

Overtaking/ passing/ changing lanes 280 1750 −0.25 (0.09) −0.34 (0.10)

Slowing/stopping 43 608 −0.89 (0.17) −0.84 (0.18)

Other 121 966 −0.30 (0.11) −0.35 (0.11)

Multiple passengers No (referent) 1392 9908 0 0

Yes 695 2839 0.28 (0.08) 0.34 (0.08)

Driver No (referent) 433 1710 0 0

Yes 1654 11,037 −0.16 (0.09) −0.08 (0.09)

Modifiable factors

Driver contributing circumstance No contributing action (referent) 871 6508 0

Disregarded traffic regulation 302 1487 0.35 (0.09)

Reckless, careless, negligent, aggressive driving 407 2510 0.16 (0.08)

Inattentive/distracted driver 256 1093 0.25 (0.09)

Other contributing action 251 1149 0.25 (0.10)

Occupant Protection None (referent) 870 4534 0

Seat belt 1052 7439 −1.19 (0.09)

Child safety restraint 59 384 −1.25 (0.20)

Other restraint/ protection 106 390 0.18 (0.16)

Quasi-likelihood Information Criterion (QIC) 10,844.4 10,077.4 9676.8

AUC (95% CI) 0.69 (0.68, 0.71) 0.75 (0.74, 0.76) 0.78 (0.76, 0.79)

Abbreviations: AUC Area under the receiver operating characteristic (ROC) curve
amodel 1 includes non-modifiable factors
bmodel 2 includes non-modifiable and semi-modifiable factors
cmodel 3 includes non-modifiable, semi-modifiable, and modifiable factors
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this example, other characteristics were considered con-
stant for all the vehicle occupants, but they may be
changed easily (and will result in different risk esti-
mates) to determine risks for other individuals in
different scenarios.
The non-modifiable, semi-modifiable, and modifiable

factors used to predict the injury or death in our
example dataset have been previously identified as risk
factors for a farm crash (Ranapurwala et al. 2016;
Hughes and Rodgman 2000; Peek-Asa et al. 2007; Pinzke
and Lundqvist 2004; Costello et al. 2003; Gerberich et al.
1996; Jaarsma and De Vries 2014), and injury (Hughes
and Rodgman 2000; Marlenga et al. 2006; Gkritza et al.

2010; Maio et al. 1992; Stephan and Newstead 2014;
Russo et al. 2014). However, these studies focused on
reporting effect estimates (odds ratios or rate ratios) of
association between individual risk factors and injury or
death in a farm crash. Such models also assume that an
individual’s outcomes do not depend on another individ-
ual’s outcomes (no interference assumption, also known as
the stable unit treatment value assumption) (Schwartz et al.
2012). This is another differentiating feature, that while
causal (or associational) modeling assumes (rather requires)
no interference, predictive modeling embraces interference.
Using different combinations of predictors could allow

one to estimate the predictive capability (or sensitivity)

Table 3 Comparison of the expected (model-based) to observed number of injuries in the nine states from 2005 to 2010

State Total
occupants
(N)

Observed
injuries or
deaths (N)

Non-modifiable (Model 1)
QIC = 10,844.4
AUC = 0.69 (0.68, 0.71)

Non + semi-modifiable (Model 2)
QIC = 10,077.4
AUC = 0.75 (0.74, 0.76)

Non + semi + modifiable (Model 3)
QIC = 9676.8
AUC = 0.78 (0.76, 0.79)

Avg. pred.
Prob.

Expected injuries/
deaths (N)

Avg. pred.
Prob.

Expected injuries/
deaths (N)

Avg. pred.
Prob.

Expected injuries/
deaths (N)

IA 2279 421 0.1804 411 0.1820 415 0.1818 414

IL 2651 421 0.1600 424 0.1602 425 0.1594 422

KS 1477 186 0.1251 185 0.1246 184 0.1242 183

MN 1887 199 0.1008 190 0.1044 197 0.1017 192

MO 1893 207 0.1135 215 0.1169 221 0.1197 227

ND 482 51 0.1052 51 0.1066 51 0.1064 51

NE 1159 189 0.1634 189 0.1641 190 0.1619 188

SD 453 74 0.1549 70 0.1586 72 0.1592 72

WI 2553 339 0.1383 353 0.1367 349 0.1365 348

Total 14,834 2087 0.1408 2089 0.1419 2104 0.1415 2099

Abbreviations: Avg. pred. Prob. Average predicted probability, AUC Area under the receiver operating curve, QIC Quasi-likelihood information criteria

Table 4 Validation of the predictive models

Validation
data years
(Training
data years)

Total
validation
data
occupants
(training
data
occupant)

Observed
injuries or
deaths in
validation
data (N)

Non-modifiable (Model 1) Non + semi-modifiable
(Model 2)

Non + semi +modifiable
(Model 3)

Avg. pred.
Prob.

Expected injuries/
deaths (N)

Avg. pred.
Prob.

Expected injuries/
deaths (N)

Avg. pred.
Prob.

Expected injuries/
deaths (N)

2008-‘10
(‘05-‘07)

7624
(7210)

1095 0.1407b 1073 0.1445e 1102 0.1437h 1095

2009-‘10
(‘05-‘08)

5216
(9618)

779 0.1383c 721a 0.1405f 733 0.1397i 729

2010 (‘05-‘09) 2615
(12,219)

372 0.1424d 372 0.1410g 369 0.1401j 366

Abbreviations: Avg. pred. Prob. Average predicted probability
ap-value = 0.0327 (Chi Sq = 4.56, df = 1), suggesting that expected injuries and deaths (n = 721) were significantly different than the observed (n = 779). All other
expected to observed differences were non-significant
bAUC = 0.69 based on training data 2005–2007
cAUC = 0.70 based on training data 2005–2008
dAUC = 0.69 based on training data 2005–2009
eAUC = 0.75 based on training data 2005–2007
fAUC = 0.75 based on training data 2005–2008
gAUC = 0.74 based on training data 2005–2009
hAUC = 0.77 based on training data 2005–2007
iAUC = 0.77 based on training data 2005–2008
jAUC = 0.77 based on training data 2005–2009
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of the predictive models. For example, we identified real-
istic scenarios where the risk of injury given a farm crash
was as low as 3% for some occupants, and as high as
93% for others, a difference of up to 90% of injury and
death risk. This suggests good predictive capability of
the model, since the predictive model covers most of the
probability range between 0 and 1 (or 0 and 100%). Such
a sensitive tool may be useful for policy makers to

simulate potential effects of evidence-based inter-
ventions in well-defined populations and conduct cost-
benefit analysis for widespread policy initiatives. For
example, if an intervention is known to improve
seat-belt compliance by 60% among a specific group of
low compliant drivers, it could be simulated using our
predictive model, which will allow us to estimate the
number of overall injuries and deaths prevented. We can
then estimate the cost of the prevented injuries and
deaths and compare that against the cost of implemen-
ting the intervention.
Similar predictive models could be developed in other

research areas to help physicians make more informed
decisions about prescribing medications to their patients.
For example, a risk prediction tool, like the one we devel-
oped, could inform physicians of their patient’s risk of
suffering from an opioid use disorder in the future due to
exposure to prescription opioid medication. Such in-
formation will help the physician to better titrate the
patient’s pain medications. Eventually, such tools may
not only aid physicians but also improve health out-
comes for patients. Now, with the advancement of
analytical approaches and superior computing power,
and their integration in medicine, such approaches
can be feasibly deployed and used.
Some best practices to develop and improve predictive

models may involve the following, although this is not
an exhaustive list. First, the overall data sample should
be carefully selected so that it represents the relevant
source population. Second, the training dataset should
be large enough so as to observe all possible combi-
nations of predictors. Third, the validation dataset
should represent the same data generating mechanism
as the training dataset, which can be accomplished
through random selection of the observations for the
validation dataset from the overall sample. Fourth, for
quantitative variables, the most appropriate functional or
categorical representation must be utilized. For example,
age broken into 5-year categories may sometimes provide
better prediction than 10-year age categories or age
treated as a continuous variable. Fifth, when predictive
outcomes exhibit secular time trends, appropriately
accounting for such trends in the modeling structure may
help improve the prediction. Sixth, when combining finer
categorical variables into larger categories, it is prudent to
combine finer categories that produce similar model
coefficients and avoid combining categories that vary
considerably in their model coefficients. The use of a
model selection criterion, such as QIC, AIC, or BIC, can
often facilitate the fourth, fifth and sixth objectives. Lastly,
for a predictive model to be utilized in practice, there
must be a temporal ordering between the predictors
and the outcome; specifically, all predictors must be
observed before the occurrence of the outcome.

Table 5 Predicted probabilities of injury or death for drivers and
passengers in varying farm crash scenarios using the model 3
estimated coefficients from Table 1

The risk or injury or death in a farm crash in Iowa for a 25–34 year old,
male, in growing season, clear weather, between 6:00–11:59 am,
daylight, heading straight, passengers on board (for single vehicle crash,
manner of collision = non collision; for multiple vehicle crash, manner of
collision = rear end)

Vehicle/ occupant
type

Seat
belt

Driver
contributing
circumstances

Risk of injury or
death (%)

Single
vehicle
crash

Multiple
vehicle
crash

Farm vehicle
driver

Yes None 16.7% 7.3%

Farm vehicle
passenger

17.8% 7.8%

Non-farm
vehicle driver

28.7%

Non-farm
vehicle
passenger

30.3%

Farm vehicle
driver

Yes Disregarded traffic
regulations

22.2% 10.1%

Farm vehicle
passenger

23.6% 10.8%

Non-farm
vehicle driver

36.4%

Non-farm
vehicle passenger

38.2%

Farm vehicle
driver

No None 39.8% 20.6%

Farm vehicle
passenger

41.6% 21.8%

Non-farm
vehicle driver

57.0%

Non-farm
vehicle
passenger

58.8%

Farm vehicle
driver

No Disregarded traffic
regulations

48.5% 26.9%

Farm vehicle
passenger

50.4% 28.4%

Non-farm
vehicle driver

65.3%

Non-farm
vehicle
passenger

67.0%
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These individual-level predictive models are extended
further into more complex modeling frameworks like
agent-based models that predict systems level changes.
Historical and existing data sources can be used to
develop predictive models, which can incorporate more
data over time to improve the model’s predictive capabi-
lities. Such iterative updating can be viewed as a type of
“machine learning” (Wicks et al. 2016). Advances in
computing have already taken predictive modeling to
the next stage, via machine learning and precision
medicine. Methods such as random forests, neural net-
works, and Q-learning utilize observational or experi-
mental data, superimpose predictive modeling theory,
and not only predict potential future outcomes, but also
allow us to make evidence-based decisions to optimize
the best possible outcomes in the future. However, some
machine learning methods have been characterized as
“black box” techniques that obfuscate rather than
illuminate the dynamics of the underlying phenomenon.
A clear advantage of the predictive modeling approach
presented here is that it provides an interpretable and
transparent characterization of these dynamics (Keil and
Edwards 2018).

Limitations
We encountered a number of limitations in our example
dataset that commonly arise in predictive modeling
regardless of the data source or substantive area of
research. First, these data were collected from nine US
states; hence, the results are not generalizable to other

US states. Second, the crashes included in these data are
those that were reported to the police. Some crashes may
never be reported, misreported as non-farm crashes, or be
excluded due to missing information. Similarly, mistakes
may materialize in the reporting of injury severity by the
responding police officers. Such exclusions and measure-
ment errors may lead to misclassification of the predicted
probabilities. Third, we developed the predictive models
using commonly available variables form the nine states;
however, there may be other unmeasured variables that
may predict the outcome and hence may have an impor-
tant role in determining the risk of injury for an indivi-
dual. Generalizability, misclassification, and unmeasured
predictors are three main limitations that may exist with
most predictive models.

Conclusion
Predictive analysis offers elegant tools that may help us
understand the multidimensionality of the occurrence of
different health outcomes and allow individual-level risk
assessment. Algorithms and tools derived from such
analyses could support policymakers, physicians, and
environmental health practitioners in developing and
implementing tailored prevention strategies to improve
health outcomes for their patients or clients.
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